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Presentation Outline 

 Why is important to recognize facial expressions? 

 Facial Expression From the Image Processing Perspective 

 Subspace Methods 

 NMF Basics 

 Discriminant NMF Methods 

 Discriminant NMF (DNMF) 

 Projected Gradient Discriminant NMF (PGDNMF) 

 Subclass Discriminant NMF (SDNMF) 

 Experimental results 

 Conclusions 
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Informative Content of Facial 

Expressions  

 Human communication by nonverbal means 

(gestures and essentially facial actions). 

 Facial actions important source for 

understanding humans emotional state and 

intension. 

 Key importance to various fields e.g. human 

behavior analysis, psychiatry, HCI, 

entertainment etc.  
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Universal Facial Expressions 

 Anger 

 Fear 

 Disgust 

 Happiness 

 Sadness 

 Surprise 

 Neutral 
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Dimensionality Reduction 

 Facial image space dimensionality much higher 
than that required. 

 Necessitates to perform dimensionality reduction 
to extract the appropriate facial features. 

 Reduce computational complexity and boost 
performance of succeeding algorithms. 

 Two popular approaches: 
 Grid-based Methods 

 Subspace Methods 
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Grid-Based Methods 

 Grid is a 
parameterised face 
mask specifically 
developed for model-
based coding of 
human faces . 

 A popular facial 
wireframe model is 
the Candide grid. 

 Facial expression 
information extraction 
is performed by facial 
feature point tracking. 
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Subspace Methods 

 Among the most popular dimensionality 

reduction methods are the subspace based 

algorithms. 

 Aim to discover latent facial features by 

projecting the facial image to a linear/nonlinear 

low dimensional subspace where a certain 

criterion is optimized. 
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Non-negative Matrix 

Factorization (NMF) 
 

 Unsupervised matrix decomposition method. 

 

 Requires both the decomposed data and the yielding 

factors to contain non-negative elements. 

 

 Original data are reconstructed using only additive 

combinations of the resulting basic elements. 

 

 Distinguishes NMF from PCA, ICA, SVD 
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Non-negative Matrix 

Factorization (NMF) 
  

 NMF considers factorizations of the form:  

 

 

 where                 is the decomposed data matrix (1 

column contains 1 image),            contains the 

basis images and                  the coefficients of the 

linear combination. 

LF*RX
MZ F*R

L*RMH

ZHX
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Non-negative Matrix 

Factorization (NMF) 

 NMF training aims to learn different facial parts 

and approximate the appropriate weights to 

reconstruct the original facial images. 

 

 Consistent with the psychological intuition of 

combining parts to form the whole regarding the 

objects representation in the human brain.  
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Non-negative Matrix 

Factorization (NMF) 

 Approximation error metrics : 

 Kullback-Leibler (KL) divergence 

 

 

 

 Frobenius norm 
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Non-negative Matrix 

Factorization (NMF) 
 NMF optimization problem: 

 

 

 Using an appropriately designed auxiliary 

function and the EM algorithm a set of 

multiplicative update rules is derived.   
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Non-negative Matrix 

Factorization (NMF) 

 

 NMF optimization problem is convex for either 
variable Z,H but non convex for both.  

 

 Local minimum is reached.  

 

 Update rules guarantee a non increasing 
behavior of the cost function. 
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Non-negative Matrix 

Factorization (NMF) 

 Reached local minimum depends on the 

randomly selected initialization point. 

 

 Sparseness achieved is rather a side effect than 

a goal, caused by the non negativity constraints. 

 

 Tends to produce holistic basis images. 
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Notable NMF Variants 

 Local NMF (LNMF) 

 

 Discriminant NMF (DNMF) 

 

 Projected Gradients DNMF (PGDNMF) 

 

 Subclass Discriminant NMF (SDNMF) 
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Local NMF 

 To enhance basis images sparsity additional 

constraints imposed in the NMF decomposition 

cost function that: 

 enforce spatial locality of the basis images. 

 control sparsity. 

 minimize redundant information across different 

bases (orthogonal bases). 
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Local NMF 

       NMF Basis                LNMF Basis  
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Discriminant Non-negative 

Matrix Factorization 

 DNMF is an attempt to introduce LDA-inspired 

discriminant constraints in the NMF decomposition cost 

function. 

 

 DNMF aims to perform the projection to the low 

dimensional subspace in a discriminant manner. 

 

 DNMF in contrary to NMF is a supervised learning 

algorithm. 
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Discriminant Non-negative 

Matrix Factorization 

 DNMF uses the traces of the within and between 

scatter matrices also employed in Fisher 

discriminant criterion: 

 

 

 

 Seeks a projection matrix that enhances class 

separability. 
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Discriminant Non-negative 

Matrix Factorization 

 Scatter matrices are defined considering the 

projected feature vectors. 

 Class dispersion:  

 

 

 Samples dispersion within the same class: 

  

 

 

 



Department of Informatics, Aristotle 

University of Thessaloniki 

Discriminant Non-negative 

Matrix Factorization 

 DNMF cost function:  

 

 

 Goal of optimization is twofold: 

 Minimize decomposition error. 

 Find that projection matrix that maximizes the Fisher 

criterion.  
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Discriminant Non-negative 

Matrix Factorization 
 

 DNMF enhances class separability by: 

 Achieving more compact classes formation in the 

projection subspace. 

 Classes are well discriminated in the projection 

subspace. 

 Optimization based on a properly designed 

auxiliary function. 

 The iterative optimization algorithm reaches a 

local minimum. 
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Discriminant Non-negative 

Matrix Factorization 

 Optimization leads to the following multiplicative update rule for H: 

 

 

 

 

 

 

 Extract the discriminant features of an unknown test sample: 

 

       can be also used as an appropriate alternative for the pseudo-

inverse. 

 

TZ
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Discriminant Non-negative 

Matrix Factorization 

 DNMF achieves to decompose a facial image in its 

discriminant parts. 

 

 The resulting basis images correspond to salient facial 

features as: eyes, nose, mouth, eyebrows, etc. 

 

 DNMF has been successfully applied for face 

verification, facial expression recognition and frontal 

facial view recognition. 
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Discriminant Non-negative 

Matrix Factorization 

 

 

 

 DNMF basis images. 
 

 The resulting basis images 
correspond to salient facial 
features as: eyes, nose, 
mouth, eyebrows, etc. 
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Projected Gradients DNMF 

 Multiplicative update rules only guarantee a 

non increasing behavior of the objective 

function. 

 

 Convergence to a stationary limit point is not 

guaranteed. 

 

 To assure stationarity, the constrained 

optimization problem is solved using projected 

gradients. 
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Projected Gradients DNMF 

 The modified optimization problem minimizes 
the following cost function: 

 

 

 

 Two sub problems are defined considering one 
variable is kept fixed and optimization is 
performed for the other. 
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Projected Gradients DNMF 

 We successively optimize the following sub 

problems 

                        . 

 

                        . 

 Considering the first sub problem, at a given 

iteration round t the following update rule is 

applied: 
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Projected Gradients DNMF 

 Operator P[.] guarantees that no negative values 
are assigned to the updated elements. 

 

      is the learning step at iteration round t. 
Crucial since it determines convergence speed. 

 

 Iterating this update rule a sequence of 
minimizers             is generated where it is 
guaranteed to find a stationary point. 
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Projected Gradients DNMF 

 Stationarity condition check step to terminate 

optimization: 

 

 

                    is the projected gradient: 
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Projected Gradients DNMF 

      

       is a predefined stopping tolerance.  
 A small value leads to a termination after a large 

number of iterations. 

 A value close to 1 results in a premature termination. 

 

  A similar optimization process is followed for the 
weights matrix.   



Department of Informatics, Aristotle 

University of Thessaloniki 

Projected Gradients DNMF 

 

 Discriminant constraints are only involved 
during optimization of the weights matrix. 

 
 

 Projected gradients advantages: 
 Well established optimization properties. 

 Achieve faster convergence. 

 Achieve better performance. 
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Subclass Subspace Techniques 

 LDA limitations: 

 LDA assumes that the sample vectors of each class 

are generated from underlying multivariate Gaussian 

distributions having a common covariance matrix but 

with different class means. 

 Assuming that each class is represented by a single 

compact data cluster, the problem of nonlinearly 

separable classes can not be solved. 
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Subclass Subspace Techniques 

 In this two class 
dimensionality reduction 
problem LDA will fail to 
reduce the dimensionality 
of the original feature space 
to one because the second 
class corresponds to two 
disjoint distributions.  

 

 One can solve this problem 
by dividing the second 
class into two subclasses. 
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Subclass Subspace Techniques 

 Typically, in real world applications, data usually do have 
a subclass structure. 

 

 Common case in facial expression recognition, since 
there is no unique way that people express certain 
emotions, hence leading to expression subclasses. 

 

 Other factors such as facial pose, texture and 
illumination variations, enhance the subclass structure of 
facial expressions 
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Subclass Subspace Techniques 

 

 Clustering based Discriminant Analysis (CDA) regards 

that data inside each class form various subclasses, 

where each one is approximated by a Gaussian 

distribution. 

 

 Approximate the underlying distribution of each class by 

a mixture of Gaussians 
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Subclass Discriminant NMF 

(SDNMF) 

 

 SDNMF is a supervised learning algorithm.  

 

 Requires class and subclass labels. 

 

 Attempts to find discriminant projections by 
imposing discriminant criteria that assume 
multimodality of the available train data. 
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Subclass Discriminant NMF 

(SDNMF) 

 

 The decomposition cost function imposes CDA 

inspired discriminant criteria that aim to enhance 

class separability in the reduced dimensional 

projection subspace by achieving better 

discrimination of the respective subclasses.  
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Subclass Discriminant NMF 

(SDNMF) 

 

 

 Within subclass scatter matrix represents the 
scatter of the projected sample vector 
coefficients around their subclass mean.  
 

 

 

 

 

 Minimizing its trace will result in more compact 
subclasses formation. 

 
 

 



Department of Informatics, Aristotle 

University of Thessaloniki 

Subclass Discriminant NMF 

(SDNMF) 

 

 

 Between subclass scatter matrix defines the 
scatter of the mean vectors between all 
subclasses that belong to different classes.  

 
 

 

 

 

 Maximizing its trace will enhance separability 
between subclasses belonging to different classes. 
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Subclass Discriminant NMF 

(SDNMF) 

 Goal of optimization is twofold: 
 Minimize decomposition error. 

 Find that projection matrix that maximizes the CDA inspired 
criterion.  

 

 Optimization is performed using an auxiliary function.  

 

 Derived multiplicative update rules consider both 
samples class origin and clusters formation inside each 
class. 
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Experimental Results 

 Experiments performed on Cohn-Kanade and JAFEE 
databases. 

 Each facial image was isotropically scaled, to a fixed 
size of 30*40 pixels and converted to grayscale. 

 Training set was used to learn the basis images for the 
low dimensional projection space, while test set to report 
the facial expression recognition accuracy rates. 

 Classification was performed by feeding the projected to 
the lower dimensional space discriminant facial 

expression representations to a linear SVM classifier. 
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Experimental Results 

 Mean expressive image for the two more distinct  
subclasses of each class. (considering 3 subclasses 
partitioning.)  

 The diverse illumination conditions in the Cohn-Kanade 
database are evident.  
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Experimental Results 

 An increase by more than 4% has been 

achieved by incorporating the CDA inspired 

discriminant constraints in the NMF cost 

function. 
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Experimental Results 

 Database Enrichment 

 

 Examine the sensitivity of NMF based algorithms 

w.r.t. registration errors of the facial ROI . 

 

 Propose a training set enrichment approach for 

improving the performance of subspace learning 

techniques. 
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Experimental Results 

 Database Enrichment 

 Geometrically transformed versions of each initial 

facial image. 

 Generated 24 different geometrical distortions applied 

to each initial facial image by varying the eyes center 

position by a single pixel along a cross shaped shift 

direction. 

 24 different translated, scaled and rotated versions of 

each original facial image in the database. 
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Experimental Results 

 Enriched training facial image samples resulting from a single image 
of the Cohn-Kanade database 
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Experimental Results 

Database Kanade Kanade 

Enriched 

JAFEE JAFEE 

Enriched 

NMF 64.85% 62.45% 56.72% 53.69% 

DNMF 66.08% 69.20% 47.40% 55.69% 
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Experimental Results 

 Experimental Results on the JAFFE database. 
 Classification accuracy increased across all discriminant NMF 

methods. 

 SDNMF recognition accuracy increased by almost 13% 
compared with that attained using the original training data. 
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Conslusions 

 Diversity of facial expression problem. 

 

 Discriminant NMF methods successfully decomposed a 

facial image into its salient parts. 

 

 This decomposition improves performance of 

subsequent classification algorithms. 

 

 Multimodality of facial expression image samples can be 

appropriately handled using CDA inspired discriminant 

constraints. 
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