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Networks

The world is networked – urban transportation systems,
electric power grids, the Internet, and the Web are all large
complex systems that share an important feature:
they are networked

Network science faces three general problems:

How a network can be inferred from real data
How to characterize the network, its structure and
properties
What the processes are that take place on networks
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Processes on Networks

As many dynamic phenomena as networks:
biologists study reaction kinetics on metabolic networks
computer scientists monitor the flow of information on
computer networks
epidemiologists, sociologists, and economists explore the
spread of viruses and ideas on social networks
electrical engineers study and control power grids

Two basic problems that we have studied:
Linear processes on networks
Epidemic models
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Random walk and consensus

The simplest dynamical processes on networks are linear
processes:

xi(t + 1) =
∑

j

bijxj(t),

xi – quantity associated to node i
B = [bij ] – a matrix related to the adjacency matrix A
x = [x1, . . . , xN ]

T – column vector of length N

x(t + 1) = Bx(t),
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Random walk and consensus

Random walk: B is column stochastic, bij = aij/sj

Consensus: B is row stochastic, bij = aij/si

si =
∑

j aij – the degree of node i

x(t) = Btx(0)→

{
(π ⊗ 1T

N)x(0) random walk
(πT ⊗ 1N)x(0) consensus

=

{
π1T

Nx(0) = π ‖x(0)‖
1Nπ

T x(0)

π – dominant eigenvector of B
1N – length N column vector of 1
C ⊗ D – Kronecker product
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Random walk and consensus

Random walks – dynamical processes aiming at modeling
the diffusion of some quantity or information on networks
Random walks have a long history is physics, chemistry,
biology, computer science (PageRank, BLAST), and so on

In networks of agents, consensus means to reach an
agreement regarding a certain quantity of interest that
depends on the state of all agents
Consensus problems have a long history in physics
(synchronization), electrical and control engineering,
computer science (distributed computing), and so on
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Epidemic models

The earliest account of mathematical modeling of spread
of disease was carried out in 1766 by Daniel Bernoulli.
A. G. McKendrick and W. O. Kermack: A Contribution to
the Mathematical Theory of Epidemics (1927)
Reed-Frost epidemic model (1928) – one of the simplest
stochastic epidemic models:

Each infective individual at time t independently makes
contacts with all other individuals in the population with
some probability p, and if a contacted individual is
susceptible, it becomes infected at time t + 1
At time t + 1, the infective individuals from time t are
removed from the epidemic process
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SIS model

Population of N individuals, connected in a network
structure represented by a graph G = (V ,E) with node set
V and edge set E
Each node can be in one of two possible states:
susceptible (S) and infective (I)
si(t) = [sS

i (t) sI
i (t)]

T – status vector, an indicator vector
containing a single 1 in the position corresponding to the
present state, and 0 everywhere else
pi(t) = [pS

i (t) pI
i (t)]

T – probability mass-function (PMF) of
node i at time t : pS

i (t) + pI
i (t) = 1
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SIS model

The evolution of SIS is described by the following equations:

pI
i (t + 1) = sS

i (t)fi(t) + (1− δ)sI
i (t),

si(t + 1) = MultiRealize[pi(t + 1)].

MultiRealize[·] – performs a random realization for the
PMF given with pi(t + 1)
The first term on the right hand side is the probability that a
susceptible node i is infected fi(t) by at least a neighbor
The second term stands for the probability that infected
node i at time t does not recover
0 ≤ δ ≤ 1 – the cure rate of the virus
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Epidemic models in social networks

D. Kempe, J. Kleinberg, E. Tardos. Maximizing the Spread of
Influence through a Social Network. Proc. 9th ACM SIGKDD
Intl. Conf. on Knowledge Discovery and Data Mining, 2003.

When node i first becomes active in step t , it is given a
single chance to activate each currently inactive neighbor
j ; it succeeds with a probability βi,j (= β)
If i succeeds, then j will become active in step t + 1; but
whether or not i succeeds, it cannot make any further
attempts to activate j in subsequent rounds.
The process runs until no more activations are possible.
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Epidemic models in social networks

Influence of a set of nodes A, denoted σ(A), – expected
number of active nodes at the end of the process, given
that A is an initial active set
The influence maximization problem – for a parameter k ,
find a k -node set of maximum influence
NP-hard problem
Natural greedy strategy obtains a solution that is provably
within 63% of optimal (for several classes of models)
A general approach for reasoning about the performance
guarantees of algorithms for influence problems in social
networks
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Thresholds in epidemic models

M. Draief, A.Ganesh, L. Massoulie: “Thresholds for virus
spread on networks”, Annals of Applied Probability, Vol. 18, No.
2 (2008), pp 359–378

Suppose βλ1,A < 1. Then, the expected number of
removed nodes satisfies

NR(∞) ≤ 1
1− βλ1,A

√
nNI(0)

λ1,A – the largest eigenvalue of the adjacency matrix
NI(0) – number of initial infectives
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Spreading processes on networks

Several approaches to study processes on networks:
Mathematics (stochastic, deterministic, dynamical systems
approach)
Physics (statistical physics, the theory of phase transitions
and critical phenomena)
Computer science (optimal solutions, computational
complexity theory)

The problem of modeling how diseases spread among
individuals has been intensively studied for many years. Today
the problem has attracted a lot of interest in a view of possible
applications in social networks and viral marketing.
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Deterministic models

Deterministic models
Linear models

xi(t + 1) =
N∑

j=1

bijDijxj(t)

Epidemic models

xi(t + 1) = [1− xi(t)]

1−
N∏

j=1

[1− βaijxj(t)]

+ (1− δ)xi(t)

xi(t + 1) = [1− xi(t)]

 N∑
j=1

βbijxj(t)

+ (1− δ)xi(t)

Non-trivial solutions
Stability analysis
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Linear processes on networks – summary

Broad class of analytically solvable processes on networks
Random walk and consensus process
The model is analytically solvable:

dynamical equation for each node may be different
the network may have an arbitrary finite graph and
influence structure

In the homogeneous case the model is decomposable:
equilibrium behavior can be expressed as an explicit
function of network topology and node dynamics
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Epidemic models – summary

The simplest ergodic epidemic model:
susceptible – infective – susceptible (SIS)

All results are derived for the SIS model but can be
extended to all other models
The presented results are related to all types of spreading
(idea, failure, rumor), regardless on the type of the spread
agent
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Outline

Linear processes on networks

Homogeneous processes
Heterogeneous processes
Network hierarchy

Epidemic models

Number of infective nodes in epidemic models
Topology independent spreading processes
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Linear processes on networks

xi = [x1
i x2

i . . . x
mi
i ]T – a nonnegative mi -dimensional

column vector
B – a stochastic N × N matrix related to the adjacency
matrix A
Dij – an mi ×mj nonnegative matrix such that each row
(column) of Dij sums up to 1

The evolution of each node variables has the following form:

xi(t + 1) =
N∑

j=1

bijDijxj(t),

for all i = 1, . . .N.
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Two approaches

1 Consider each node i as a complex system: node i is
described with a a vector of quantities (not a scalar
quantity)

2 Consider a network with N nodes: each node i actually
being a network with mi internal nodes (the total number of
nodes in this network of networks is m1 + . . .+ mN )
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Network of Markov chains

Figure: Network of Markov chains describing weather dynamics.
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Random walk in a network of networks

Figure: Random walk in a network of networks: a walker makes a
2-step decision for where to go; it first chooses a country, then a city
within that country.
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Homogeneous processes

mi = m and Dij = D 6= Im (Im is m ×m identity matrix)
homogeneous processes – the local dynamics in each
node is described with the same evolution equation

The evolution of each node variables has the following form:

xi(t + 1) = (B ⊗ D)x(t) ≡ Hx(t)
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Random walk

B and D are column stochastic

The stationary solution of the random walk is

x(t) = H tx(0)→ (π ⊗ ρ) ‖x(0)‖
lim

t→∞
xk

i (t) = ‖x(0)‖πiρk

for all i = 1,2, . . . ,N and k = 1,2, . . . ,m.
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Consensus

B and D are row stochastic

The model stationary solution is

x(t) = H tx(0)→ 1Nm(π
T ⊗ ρT )x(0)

lim
t→∞

xk
i (t) = (πT ⊗ ρT )x(0)

for all i = 1,2, . . . ,N and k = 1,2, . . . ,m.
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Network of identical Markov chains

B is row stochastic and D is column stochastic
The model stationary solution is

x(t) = H tx(0)→ (π1 ‖x1(0)‖ . . . πN ‖xN(0)‖)[ρ . . . ρ]T

lim
t→∞

xk
i (t) = (π1 ‖x1(0)‖ . . . πN ‖xN(0)‖)ρk .

If ‖xi(0)‖ = c,∀i = 1, . . . ,N, then the model satisfies the
consistency rule ‖xi(t + 1)‖ = ‖xi(t)‖ = c.
For c = 1, the process corresponds to N Markov chains:

lim
t→∞

xk
i (t) = ρk .

In a network of N identical Markov chains, the equilibrium
solution does not depend on the graph topology
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Heterogeneous processes

Local dynamics differs for each node in the network
H = B ⊗ {Dij} ≡ [Hij ], Hij = bijDij

x(t + 1) = B ⊗ {Dij}x(t) = Hx(t),
y(t + 1) = Hy(t)

y = [y1y2 . . . ym1︸ ︷︷ ︸
x1

ym1+1ym1+2 . . . ym1+m2︸ ︷︷ ︸
x2

. . . ys]
T

y – column vector of length s = m1 + . . .+ mN
H – s × s matrix
γ = [γ1, γ2, . . . γs]

T – dominant eigenvector of H
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Random walk

B is column stochastic; each column of Dij sums up to 1

The model satisfies the consistency rule
‖x(t + 1)‖ = ‖x(t)‖
H is column stochastic matrix
Assuming that H is irreducible matrix, one can show

lim
t→∞

yi(t) = ‖x(0)‖ γi

for all i = 1,2, . . . , s
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Consensus

B is row stochastic; each row of Dij sums up to 1

H is row stochastic
Assuming that H is irreducible matrix, one can show

lim
t→∞

yi(t) =
∑

i

γiyi(0)

for all i = 1,2, . . . , s.

Ljupco Kocarev Analytically tractable processes on networks



Motivation
Our Contribution

Summary

Linear processes on networks
Number of infective nodes in epidemic models
Topology independent spreading processes

Network of different Markov chains

B is row stochastic; each column of Dij sums up to 1

The matrix H is not stochastic, however 1 is its dominant
eigenvalue
The multiplicity of 1 is tied to the structure of the underlying
graph
Assuming that H is irreducible matrix, one can show

The consistency rule is satisfied at local level: at each node
‖xi(t + 1)‖ = ‖xi(t)‖.
Let αi be a stationary distribution of the Markov chain at
node i :

αi = [γa+1 . . . γa+mi ]
T ,a =

i−1∑
j=1

mj .
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Network hierarchy

Complex networks exhibit hierarchical organization – the
network self-organizes into modules that further subdivide
into modules of modules, and so forth over multiple scales
The first problem – developing a general framework to
study network hierarchy taking into account the processes
on networks

Hierarchical processes:

x(t + 1) =
(
. . .
(

B ⊗ {D1
ij }
)
. . .⊗ {Dh

ij }
)

x(t),

H1 = B ⊗ {D1
ij }, H2 = H1 ⊗ {D2

ij }, so on and Hh = Hh−1 ⊗ {Dh
ij }
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Network hierarchy

The second problem: decomposing a given graph into
subgraphs (the matrix H into matrices B and Dij )
The decomposition of H has several advantages

1 Random walk
Stationary solution is one of the most used centrality
measures in networks
The decomposition can be used to obtain a high-level view
of stationary dynamics by lumping nodes into super-nodes
This reduces the size of the system, and thus, the time it
takes to compute the solution

2 Consensus
High-level stationary solution can be used to obtain
approximation for the stationary consensus values
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Stochastic SIS model

pI
i (t + 1) = sS

i (t)fi(t) + (1− δ)sI
i (t)

fi(t) = 1−
N∏

j=1

[
1− βaijsI

j (t)
]
.

β – probability of disease transmission from an I node to
an S node
Let sS

i (t) = 1 and let N(i ; t) be a set of all infected
neighbors of i at time t . Then

pI
i (t + 1) = 1−

∏
j∈N(i;t)

[1− β]

is the probability that the node i changes its status from S
to I at time t + 1.
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Deterministic model

Deterministic model (xi = pI
i ):

xi(t + 1) = [1− xi(t)] fi(t) + (1− δ)xi(t)

fi(t) = 1−
N∏

j=1

[
1− βaijxj(t)

]
.

The origin xi = 0 (∀i) is a fixed point of the system
The origin is stable when 1− δ + βλ1,A < 1, where λ1,A is
the largest eigenvalue of the adjacency matrix
β/δ > 1/λ1,A the disease will reach an endemic state. Let
ai(G) = xi(∞) be the unique globally stable fixed point
different from the origin for the graph G
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Number of infective nodes

Following conclusion holds in arbitrary graphs:
The probability of node i to be in state I when t →∞, ai(G)
is bounded:

ai(G) ≤ 1
1 + δ

Moreover,

NI =
∑

i

pI
i ≡

∑
i

ai(G) ≤
∑

i

1
1 + δ

=
N

1 + δ
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Number of infective nodes

The distribution of the number of infective nodes (in the
equilibrium state – when t goes to infinity) has two peaks:

ahub ≡
1

1 + δ
aleaf ≡

β

β + δ(1 + δ)

The values ahub and aleaf do not depend on network
topology.
The fraction of nodes that behave as hubs and leaves is
always comparable with the total number of the nodes in
the network (for some values of β).
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Arbitrary graphs

Let GN be a family of graphs for which the maximum node
degree kmax is unbounded when N →∞. Then as N →∞:

The critical value of β, βcr , for which the point ai(GN) is a
stable fixed point, tends to zero .
For given β ≥ βcr and δ, and arbitrary ε > 0, one can find a
degree value kc such that ahub − ε < ai(GN) < ahub holds
for all nodes i for which ki ≥ kc .
The threshold kc depends on δ (when ε and β are fixed).
As δ → 0, the SIS model approaches the SI model, and the
approximation ai(GN) ≈ ahub becomes more accurate and
holds for smaller values of kc . When δ → 1 the
approximation ai(GN) ≈ ahub becomes more inaccurate
and holds for larger values of kc .
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Real networks

We study 12 real networks, all of them as undirected
graphs considering only their giant components:

http://snap.stanford.edu/

As a typical example we present results only for the Enron
e-mail network in more detail.
The giant component of the Enron network has N = 33696
nodes; kmax = 1383 and λ1 = 125.906.
Epidemic occurs for β ≥ βcr = 0.003971 when δ = 0.5.
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Enron network

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5
x 10

4

β

N
I

0.004 0.005 0.006 0.007
0

100

200

300

Figure: The number of infective nodes NI in the endemic state for the
Enron network as β is varied, δ = 0.5. The inset shows NI for values
of β slightly above the epidemic threshold. Dashed line is the upper
bound on NI .
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Enron network

Since real networks are finite, the inequality ahub− ε < ai < ahub
does not hold for arbitrarily small values of ε.

For given β ≥ βcr and δ, and arbitrary ε > 0, one can find a
degree value kc such that ahub − ε < ai(GN) < ahub holds
for all nodes i for which ki ≥ kc .

δ = 0.5 and ε = 0.01 – we calculate kc for different values
of β: kc = 187 for β = 0.1, kc = 51 for β = 0.2, and so on
until kc = 6 for β = 0.8.
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Enron network

When ε and β are fixed, the threshold kc depends only on
δ. As δ → 0, the SIS model approaches the SI model, and
the approximation ai(GN) ≈ ahub becomes more accurate
and holds for smaller values of kc . When δ → 1 the
approximation ai(GN) ≈ ahub becomes more inaccurate
and holds for larger values of kc .

β = 0.1 and ε = 0.01: for δ = 0.01 we obtain kc = 8, for
δ = 0.5, kc = 187, and for δ = 0.99, kc = 1384.
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Enron network

Let εcr = εcr (δ, β) be the critical value of ε for which, given δ
and β, the inequality ahub − ε < ai < ahub holds only for
nodes with maximum degree ki = kmax .

For the values β = 0.004 > 0.0039, β = 0.0376, and
β = 0.1, we obtain εcr = 0.6666667, εcr = 0.01, and
εcr = 2.69× 10−10, respectively.
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Enron network
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Figure: Histograms of infective nodes in the Enron e-mail network.
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Real networks
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Figure: The fraction of nodes that behave as hubs (gray) and leaves
(light gray) when β is varied, and δ = 0.5, for three different networks.
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12 different networks
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Figure: The fraction of nodes that behave as hubs (gray) and leaves
(light gray) for β = 0.1, β = 0.4 and β = 0.8. δ = 0.5.
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Model of rumor spreading

pI
i (t + 1) = sS

i (t)
∑

j∈N(i)

βbijsI
j (t) + (1− δ)sI

i (t)

N(i) – a set of all friends of a person i
bij – probability that person i communicates with person j∑

j bij = 1 – we assume that the person i certainly
communicate with one person from the set N(i)
β – probability of rumor transmission from an I node to an
S node
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Topology independent spreading processes

pI
i (t + 1) =

[
1− pI

i (t)
] N∑

j=1

βbijpI
j (t) + (1− δ)pI

i (t)

It can be shown that in the limit case pI
i (∞) = pI .

pI = (1− pI)βpI
∑

j

bij + (1− δ)pI

= (1− pI)βpI + (1− δ)pI

The last equation has two solutions: pI = 0 and pI = 1− δ
β .
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Topology independent spreading processes

δ
β < 1 – the solution pI = 1− δ

β is globally stable fixed point
δ
β > 1 – any infection in the network, will be eventually
diminished, when t →∞
Nodes status probabilities have an analytical solution in
closed form: they are no longer topology dependent, and
are functions only of the spreading process parameters β
and δ for the SIS model
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Summary

Technological networks have quite advanced technological
implementations, but our understanding of their flow
mechanisms and long-term dynamics is far from complete

Network science is a huge playground that can
accommodate many research profiles: mathematicians,
physicists, biologists, electrical and computer engineers,
sociologists ...
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