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Voice Activity Detection
(VAD)

Change
Point

Voice Silence
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Each cluster contains speech from only one speaker;

Speech from the same speaker is gathered into the
same cluster.
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Assumptions

> Speakers do not speak simultaneously

> No real-time constraints (allow multi-pass algorithms)
» Mutually independent and identically distributed data
» Short- time processing

> Noise: additive, zero-mean and uncorrelated with the
clean speech (in orthogonal transforms DFT, DCT, KLT)
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Speech Segmentation Algorithms

[ Energybased ][ Viedelhased ] [ Vetnicibased

use energy thresholds and
heuristics to detect silence
periods in the audio stream

easy to Implement, fiast,
computationally efficient
online, real-time processing

not robust UNAer NoIse,
misclassify fricatives,
clicking, artifacts

no direct connection
between boundaries and
acoustic changes

assign statistical models || ¢ measure the

to each acoustic class dissimilarity value
explore speech and noise between two

statistics and use a consecutive parts of the
decision rule usually parameterized signal
derived from LRT
slow, computationally
slow, complex, Intensive, offline
computationally applications
Intensive, offline
applications good precision even in
low SNRS

good precision even in

low SNRs
i Hybrid |
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Hypothesis Testing Problem

H ). (XX 350005 Xp) ~IN(Hh 5, 2 )
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Let z; be 1.i.d. d-dimensional Gaussian random vectors.

U7z 32) Zlnp 2;|0z) + Z Inp(z]07)
i=A+1

d B 1 —
—B5In(2m) — o In[¥z] - 5 D (7 —pz) 8, (2 — py)

=1

» Log-likelihood under the alternative hypothesis

B
UXspx,Xx) + LY, H'Y72Y ZIDP z;|0x) + Z In p(z;|60y)
— i=A+1
OX HY

d A 1
= —ASIEn) ~ SISy~ 5 35— ) S s - )

1=1

d B-A 1 & _
—(B — A) In(27) — 5— In |2y | — 5 Z (z; — py) 2y (2 — py

“ i=A+1
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L(Z;Hz)
L(Z; Hx)L(Z; Hy)
6(2; 9)() —+ K(Z, Hy) — E(Z, 0
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» Symmetric KL distance
KL2(X,)Y)=KL(X,Y)+ KL(Y, X)

> For Gaussian random vectors

1 _ _
KL2(X,Y) = §(HJY - HX)T(Exl + Eyl)(ﬂy — Bx)

ryu (B2 (=, 7))

rou ((377°5)) (51727 -
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Information Criteria (1)

IC = -GOF + complexity penalty

m Estimates of the KL distance

: Variants:
ConS|stent AIC [CAIC], Quasi AIC [QAIC], Takeuchi
Information criterion [TIC]

— Competing models. are  assessed

simultaneously and the best model Is selected by
applying a single rule; No constraint that one model is
the “true”.

m Dimension criteria:

— Minimum Description Length
(MDL), Hannan-Quinn criterion.

— Finds the true model, provided that such a model

exists and it is in the set of candidate models
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AIC(M) = —2In L(X; M) + P

e X are the sample data,

e L(X; M) is the maximized likelihood function under

e P is the number of the model parameters.
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» Similar to an LRT, but instead of maximizing the likelihood,
we average the likelihood over the parameters

_ Jo, P(X180, Mo) p(60| Mo) do
Jo, P(X 101, M1) p(61| M) d6:

> Best model: That with the highest posterior probability

P(Mo|X) _ P(X|Mo)  —P(Mo)

P(M1|X) P(X|Myp) P(My)

BF Prior odds
> Related to BIC
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BIC

» Penalized ML technique (Schwarz 1978). Selects the true
model asymptotically with probability 1. For n
observations:

BIC(M)=—-2InL(X;M)+ Plnn

» BIC can be derived as an approximation of the BF
Let ABIC = B[C(./\/ll) — BIO(M()) then

BIC(M,y) = BIC(M,) — ABIC ~ 2In BF

> The approximation is close, when the prior over the
parameters iIs the , I.e. a multivariate
normal prior with mean at the MLE and variance equal to
the expected information matrix per observation.
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ABIC for Multivariate Gaussian Observations

» The BIC varies between the two models (i.e. one
Gaussian vs. two different Gaussians) by

... B A . B-A_ X __
(XY ) X 512] In |3 PInB
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DISTBIC for Multivariate Gaussian
Observations

Combination of metric-based segmentation with the KL
distance and the BIC model-based segmentation
(Delacourt & Wellekens 2000).

Audio Window Feature Speech
acquisition analysis Extraction modelling

Sampling Hamming MEFCC GD GLR/KL BIC

2 steps
(iteration)
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DISTBIC

ANIMATED EXAMPLE

Dept. of Informatics, Aristotle Univ. of Thessaloniki, Greece 18/103




DISTBIC

» Feature extraction (MECC, DCT, DFT, ...)

sequence of acoustic vectors

d-dimensional vectors (multivariate Gaussians)
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DISTBIC

> Calculate dissimilarity distances of adjacent windows
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DISTBIC

» Sliding window

Distance plot
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DISTBIC
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DISTBIC

Dept. of Informatics, Aristotle Univ. of Thessaloniki, Greece 23/103




DISTBIC
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DISTBIC
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DISTBIC
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DISTBIC
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DISTBIC
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DISTBIC

» Sliding window

NYNTNRNE Ar e
mTr
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DISTBIC

» Sliding window

NN RNEIr i
LR ANARITNEN
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DISTBIC

» Sliding window

NN RNTY e
LiSdRANARAIMEN

Dept. of Informatics, Aristotle Univ. of Thessaloniki, Greece 31/103




DISTBIC
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DISTBIC (smoothing)

» Determine candidate change points (Heuristics)

&b b | WPN
kil ki

Heuristics
- select max values (vertical threshold)

- discard peaks too close to eachi other (horizontal threshold)
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Dynamic windowing scheme.
Measure similarities between windows defined by candidate points
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DISTBIC (validation)

@® Candidate accepted by BIC
Candidate discarded by BIC

> Validate candidates using BIC @ Candidate discarded by thresholding
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DISTBIC (validation)

@® Candidate accepted by BIC
Candidate discarded by BIC

> Validate candidates using =] [los @ Candidate discarded by thresholding

|
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DISTBIC (validation)

@® Candidate accepted by BIC
Candidate discarded by BIC

> Validate candidates using =] [los @ Candidate discarded by thresholding

1Teh ol
e
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DISTBIC (validation)

@® Candidate accepted by BIC
Candidate discarded by BIC

> Validate candidates using BIC @ Candidate discarded by thresholding
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DISTBIC (validation)

@® Candidate accepted by BIC
Candidate discarded by BIC
@ Candidate discarded by thresholding
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DISTBIC (validation)

@® Candidate accepted by BIC
Candidate discarded by BIC

> Validate candidates using BIC @ Candidate discarded by thresholding
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DISTBIC (validation)

@® Candidate accepted by BIC
Candidate discarded by BIC

> Validate candidates using BIC @ | Candidate discarded by thresholding
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DISTBIC (validation)

@® Candidate accepted by BIC
Candidate discarded by BIC

> Validate candidates using BIC @ Candidate discarded by thresholding
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DISTBIC (validation)

@® Candidate accepted by BIC
Candidate discarded by BIC

> Validate candidates using BIC @\ Candidate discarded by thresholding

PN
i |
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DISTBIC (validation)

@® Candidate accepted by BIC
Candidate discarded by BIC

> Validate candidates using BIC @ Candidate discarded by thresholding
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DISTBIC (validation)

@® Candidate accepted by BIC
Candidate discarded by BIC

> Validate candidates using BIC @ \ Candidate discarded by thresholding

b ebei-
i
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DISTBIC (validation)

@® Candidate accepted by BIC
Candidate discarded by BIC

> Validate candidates using BIC @ Candidate discarded by thresholding
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DISTBIC (validation)

@® Candidate accepted by BIC
Candidate discarded by BIC

> Validate candidates using BIC @)\ Candidate discarded by thresholding

"SR
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DISTBIC (validation)

@® Candidate accepted by BIC
Candidate discarded by BIC

> Validate candidates using BIC @ Candidate discarded by thresholding
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DISTBIC (validation)

@, Candidate accepted by BIC
Candidate discarded by BIC
> Validate candidates USing BIC @® \Candidate discarded by thresholding
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DISTBIC (validation)

@® Candidate accepted by BIC
Candidate discarded by BIC

> Validate candidates using BIC @ Candidate discarded by thresholding
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DISTBIC (validation)

@® Candidate accepted by BIC
Candidate discarded by BIC

> Validate candidates using BIC @ \Candidate discarded by thresholding

tb - ote1-
Nt
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DISTBIC (validation)

@® Candidate accepted by BIC
Candidate discarded by BIC

> Validate candidates using BIC @ Candidate discarded by thresholding

NYNFuN Lo
Ll T
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DISTBIC (validation)
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FA: False Alarm
MD: Missed Detection
OK: Correctly Found change

FA OKOK "MD OK OK
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PROBLEM (1)

Covariance matrices have been estimated by sample
dispersion matrices.

Alternative estimators: Robust estimates (e.g. M-
estimates), regularized MLEs.

Can we formulate efficiently BIC?Z
SOLUTION: Simultaneous diagonalization of;

covariance matrices ¥, and 2>as well as 2. and %)
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Transformed BIC (2)

m et us introduce the centered feature vectors:

A, 2]
2 |Xx]

A
1 A
Ty D %35 - 5 > 7B+ gu’xTﬁfuk
=1 =1
B B
‘EZ‘ 1 ~Tsv—15 1 ~T'sv—145
n|2y|+§z ziZZzi—i-Z Zizyzi
i=A+1 1=A+1

A
s e — SPB >0
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AplZzl ((B=A)) Bzl Ap g

+ n
2 [Bx| 2 Xy 2
ABIC
1 & 1 & 1
~Te—1~ ~Ts—1g
+§;Zi 2 Zz‘—§;zi 2x 4Ty

(B-4)

ABIC'

A
—|—§M/XTE)_(1“'/X +
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Computational cost (2)

ISjzlgle 1o W] (@3 5 + 6Bd? + (8B + 3)d + 2
iz lafsiie)inalcle R [@R304° + (4B +4)d? + (TB +9)d+ 5

7]
=3
S
=
=
£
3
A
=
£
g
=
.
@]
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BIC-based Speaker Segmentation

B [o Improve performance
— estimate speaker utterance duration
— select the most efficient features
— derive a new BIC formulation
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T

feature feature
extraction selection

training
recordings

\_/ modeling speaker utterance duration

model

best features

<> parameters\/ \ /
—

BIC with

_simulta'neo'us
diagonalization

feature
testing extraction

recordings

N
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duration (s)

— L[:g-LC:ELE.T.LE
= = = Tnverse Gaussian
coevon Logistic

0.6 0.8
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MFCC feature selection (1)

m Instead of trying to reveal the MECC order
that yields the most accurate results, an
MECC subset that i1simore suitable for
detecting a speaker change Is computed

m From an initial set of 36 MECCs, the 24 more
suitable MECCs are derived
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MFCC feature selection (2)

m Branch and bound, depth-first search, and
backiracking

= Selection criterion
m Selected subset: 1, 3-13, 16, 22-29, 31, 33, 35, 36

m Used in conjunction with thelr delta- and delta-
delta coetfficients
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Evaluation metrics

» False Alarm Rate (FAR)

A number of FA 100%
~ number of ACP + number of FA °

» Missed Detection Rate (MDR)

number of MD

- 0
number of ACP L0

FA= False Alarms, MD=Missed Detections, ACP=Actual Change Points

high value of FAR -> over-segmentation of the speech signal
high value of MDR -> algorithm does not segment the signal properly
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Evaluation metrics (2)

» Precision (PRC) and Recall (RCL)

PRC = cre 100% RCL = Cre 100%
-~ DpET "’ —4qcp 0 °

CFC=Correctly Found Changes
DET= Changes detected by the system
ACP=Actual Change Points

» F,-measure (F,)
_ 2-PRC-RCL

Fl PRC+RCL

F,: overall objective effectiveness of the system
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Experimental results

Table 1: conTIMIT
W "PRc oL | B [ FAR[MDR

Table 2: HUB-4 1997 English Broadcast News Speech dataset

mm._lﬂﬁlm

standard deviation | 0.131 0112
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Performance comparison

Table 3: Performance comparison on broadcasts.

/ N\
Database used PRC /RC’L\ ﬂji

7

Proposed HUB-4 1997  English | 0.634 |/0.922,) 0.738
system Broadcast News Speech / X

Lu and | HUB-4 1997  English 0.89
Zhang Broadcast News Speech
Ajmera et | HUB-4 English Evalua- . 0.65 | |0.67
tion —Speech —and Tran-
scripts

MATBN-2002

Kim et al. | audio track from televi-
sion talk show program
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PROBLEM (2)

» The binary hypothesis test for phonemic
segmentation requires small windows.

> Phone durations: are short as 10-20ms => need for:

efficient signallmodelling at this level

- GDlis not aigood fit for'speech in smalliframe sizes.
- What about noisy speech| ?

SOLUTIONE model noisy speech with Generalized Gamma
(GI'D)

» Use GI'D for GLRT tests in the first pass of DISTBIC
(DISTBIC-I")
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1 = mean
o = standard deviation

» Laplace Distribution (LD)

u = location
b = scale




» Gamma Distribution (I'D)

1 e—x/6’

o T (k)

f(x;k,0) =x

k>0 : shape
0>0 : scale

» Gazor (2003), Shin (2005),
Martin (2005), Nakamura (2002), and others:
I'D> LD > GD (in speech signals)
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Generalized Gamma
Distribution (GFD)

» special cases: GD (c=2, a=0.5),
LD (c=1, a=1), 'D (c=1, a=0.5),
Weibull, etc

» (a: scale, b,c: shape)
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Maximum Likelihood Estimation
(MLE) of GI'D parameters

Given n observations (univariate i.i.d. RVs), the loglikelihood is given by:

ba’ T T
l(a,b,c) =1n f(x;a,b,¢c) =nln 21€(a) + (ac—1) Zln x| — bz |z, |°
i=1 i=1
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Vionotonicaily
Increasing
function of a(7)
[use an inverse

table)
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ZuxvoTnTX

PROBLEM| (3)

> The binary hypothesis test for phonemic segmentation
requires small windows.

> Phone durations: are'short as 10-20ms

BIC underperforms for few observations
SOLUTION: use criteria corrected for small samples.

Histograms of phone (vowel, consonant) durations

Méon Tw = 73.05 ms ® Migm Tupn = 93,94 ms o Méon Tops) = 62,21 ms

Totrikf ATrékAlon = 44.05 ms Tumikrd Amdehuon = 60.63 ms Tutrikn Amdaiugn = 35.68 m4
N= 3147 i M = BOGE

HHHH"'I”III“ 5
froed 1151} g

200 300 ! L Ll W
Al&pkelx @OOyywv (ms) B PRELE (PR THEVTIY (MS) LS PKELE Uy (msh
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BIC Criticism

m BIC+C also approximates 2 In BE, for any
constant C

= While the BIC target model does not depend
on the sample size n, the parameters, which
can be reliably estimated do depend on n

B 1 can be replaced by:
— the number of observed statistics per parameter;

— the rate at which the Hessian matrix of the log-
likelihood grows
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Log-likelihood in BIC (1)

BIC(My)=—-2InL(X|My)+ Plnn

/ p(X |0k, My) p(Or| My)d Oy
J O

7
[a¥

where

e p(0x|My): prior distribution of model parameters 8 given My

e 0, mode of p(@;| M)

e I, observed Fisher information matrix of the posterior distributio

e 0, MLE

e 1 number of observations
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Log-likelihood in BIC (2)

BIC(My)=—-2InL(X|My)+ Plnn

2l P(X|Myg) = —2InP(X|0, My) —21n P(6|My)
—Pln27+ Plan +InIg(0,)] + O(n/2)

where

o I expected information matrix per observation with ij element

- a1 [020(X|0, M) A
(Le(Ok); = =3 { 0(0)i0(8}); }\‘9%913
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BIC corrected for small-samples
(BICC)

BIC(My) = 2InL(X|Mg)+ Plnn = —-20(0y) + Plnn

. n lnn

* Tremblay and Wallach (2004)
« DISTBICC-I
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Bollen’s approximation of BF
(ABF-2)

A

#
0,.1:0,)0,

] "=
k) — U1 (00 otnerwise

‘DISTABF2-I'
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Bollen’s approximation of BF
(ABF-2) for GI'D

__Yo(a)+Inbd

C

atpo(a)—alnb+1
bc

o (a)+Inb ao(a)—alnb+1

c bc

as(a) — 2(alnb — 1)hg(a) + a1 (a)
—2Inb+aln®b+1
d

dZ
arpo (@) — 2(alnb — 1) (a) + (a° + a)u (a)
—|—&ln2l;— a — 21n?)-|—3
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Revised DISTBIC

» DISTBIC-I' = DISTBIC with GI'D priors
> DISTBICC-I'=BICC instead of BIC, GI'D instead of GD

> DISTABE2-I = ABF2 instead of BIC, GI'D instead of GD

Audio Window Feature Speech Verify
acquisition analysis Extraction modelling candidates
GFD

BICC, ABF2
Sampling Hamming MFCC BIC

2 steps
(iteration)
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Experiments

Datasets: M2VTS and TIMIT. Pre-existing hand-labeling.

Compare DISTBIC-I', DISTBICC-I', DISTABF2-I" against
DISTBIC.

Phone boundaries detection. 20ms tolerance (human
error).

Additive noise (white, babble) at various SNRs (20dB,
10dB, 5dB). NOISEX-92 database.
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Results (M2VTS)

F;-measure values for M2VTS

m DISTBIC

E DISTBIC-T
DISTBICC-I

 DISTABF2-T

(clean) white white white babble babble babble
(SNR=20db) (SNR=10db) (SNR=5db) (SNR=20db) (SNR=10db) (SNR=5db)

NOISE
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Results (TIMIT)

F,-measure values for TIMIT

m DISTBIC

B DISTBIC-T
DISTBICC-I

m DISTABF2-T

(clean) white white white babble babble babble
(SNR=20db) (SNR=10db) (SNR=5db) (SNR=20db) (SNR=10db) (SNR=5db)

NOISE
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01

0.05

amplitude

-0.05

samples (x 10%)

e

O
®

: Correctly Found (CEC)
: Missed Detection (MD)
: False Alarm (FA)

|
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—e— DISTBIC

— X - DISTBICT
= DISTBICC-I
—e— DISTABF2-I
—e—DCF

—&— SVF

—w— DISTTIC

DISTBIC

DISTTIC

n
(4]

N
o

o
(=]
S
@
el
©
o
c
=
2
o
@
-
@
=]
o
@
]
An
=

oy
wm

DISTABF2-I

DISTBICC-IT |
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AIC(M) = —21n L(X; M) + 2P

small-sample corrected AIC (AICC)

Pn

Hurvich and Tsai (1989); Cavanaugh (1997);
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Bozdogan’s Information
Complexity Criterion (ICOMP)

ICOMP(IFIM) = —26(X; M) + pm<w
S —

where F: Fisher Information matrix (FIM) and IFIM: inverse FIM

* Penalizes the interdependence between the parameters by
estimating the covariance complexity of the model

 Offers a judicious balance between GoF, model complexity,
and accuracy of the parameter estimates

* |FIM can be approximated by a Monte Carlo resampling
method (Spall) 2004.
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PROBLEM (4)

> Robust estimates  of the covariance  matrix?
SOLUTION: Use an M-estimator; 1The minimum covariance

determinant estimator (MCD)

Prvicp = Z tj X
JeJ*

YMmep = Z tj (xj — bnen) (X5 — Bven))’
jeJ*

where J* is the r-element set, where the determinant of ﬁ]MCD is minimized;
t;=1/r and r ~ n/2.

Fast MCD: Rouseeuw and Van Driessen (1999)
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PROBLEM (5)
> Robust versions off AlC and'BIC

See discussion Almpanidis et al. (2009)
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Average F, rates for phoneme transitions

TABLE HI
AVERAGE F'| RATES FOR THE TOP MOST FREQUENT PHONEME CLASS TRANSITIONS

Percent of oceurrences  F) (DISTBIC) F, (DISTICOMPR) Fi (DIST)
1 silence -= stop 1.5 fd (14 70140 6267
2 vowel -= silence 9.1 71.53 TR 16 67 45
3 semivowel&glide -> vowel 8.0 63 4R 71.11 5 0§
4  siop == vowel B4 b9.44 1173 67.72
5 vowel <> fricative B.1 71.01 75.65 69.72
6 fricative -> vowel 1.5 7076 17.02 67.78
T vowel -> nasal 7.1 T0.57 74,5 67 34
& vowel -= semivowel&glide 4.8 63.37 08,77 63.21
9 fricative -= silence 4.0 67,16 TLT4 taih 44

10 nasal <= vowel 14 6715 74.39 5 44
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Speaker Diarization

. Speaker segmentation followed by speaker
clustering.

i(ui, Ez-), 1 = 1,2 be a multivariate Gaussian distribution with mean vector
E ; and covariance matrix &; modeling each class. Let also N, ¢ = 1,2 be the number
, segmentation l
Speech signal .
of feature vectors assigned to each class.

Speaker
odstig \ deoviean = doov * duEAN

{ Clustering ] d (’210, 22‘1—(1) NTT
cov =
W

A
‘ Cluster
merging

N N

- | ) dypan = (1 T W(M - ) W (i ‘H2)>
ptimal partition T

with Np = Ny 4 Ny 0 = 54 and W= 031 +(1- )3,

Dept. of Informatics, Aristotle Univ. of Thessaloniki, Greece 98/103




|| LetAbethe N x N adjacency matrix with elements equal to the distance between
| §two speech segments dooy arpay. The un-normalized Laplacian of the graph s given
|Joy L =D~ A, where D is the N'x N diagonal matrix with D{ii) = ). Ali,j).

\
. .
SN SUmM o1 tn¢ WeI1ents or the cages tNdl are 1ciacnt 10 Veriex 7

10 12
Eigenvalue Index

1 Wplicity N, and then there is a gap to the ( N, + 1)th eigenvalue. Accordingly, the most
10stable clustering 15 generally obtamed for £ that maximizes the difterence between two
1 fconsecutive eigenvalues ( B — (r_1).

The top 20 eigenvalues of |-Lnorm for two
sound files. The vertical line indicates the actual
number of speakers, which coincides with the
TR TR drastic drop in the magnitude of the eigenvalues.

Eigenvalue Index
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Performance evaluation (1)

Let 72,5 be the total number of audio segments in cluster z uttered by actor j7; IV, be
the total number of actors; V. be the total number of clusters:; 7V be the total number
of audio segments; 7z ; be the total number of audio segments uttered by actor 7: 72;. be
the total number of audio segments in cluster z.

The error for cluster ¢, (' F’;, is defined as the percentage of the total time spoken by
actor whose speech segments appear in majority in cluster 7z, that has not been clustered
to this cluster. The average classification error, ace, is defined as

1 =
ace — ~ ZC’E,

z2=—=1

The average cluster purity provides a measure of how well a cluster is limited to
only one speaker:

N~
1 = N
_ . . N f=3 2 2
acp — ~ E 7. 125, wWhere m,; = > = n77/?’?}7 .

=1

The average speaker purity provides a measure of how well a speaker 1s limited to
only one cluster:

1 Na
o . i o N 2 2
asp — —— E w5 125 where mm ; = > i1 g/ nT.
F=1
Diarization error rate:
Tra +Tars + Twrong
Ttotal

derr —

where 7r .4 1s the total duration of the non-speech segments that were classified as
speech, 7hr«s 1s the total duration of the speech segments that were classified as ei-
ther non-speech or silence, 7, ong is the total duration of speech segments that were
correctly classified as speech. but that were clustered into wrong specaker groups. and
diorar 18 the total duration of all the speech segments.
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Proposed system

Baseline system

Outliers

Outliers
included

Outliers

Outliers

2

2

3

3

(19.69, 12.82)

(19.71, 11.50)

(25.30, 12.59)

(28.57, 12.33)

(0.74, 0.14)

(0.73, 0.13)

(0.67,0.11)

(0.64, 0.08)

(0.70, 0.17)

(0.69, 0.10)

(0.77, 0.22)

(0.66, 0.27)

MDE RT-03 Training Data Speech Corpus subset:

Figure
merit

of

Proposed
system

Baseline
system

dorr (%)

20.2

28.3

acp

0.81

0.72

asp

0.59

0.52
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Conclusions - Discussion

> Modelling the speaker utterance and selecting features
within BIC improves speech segmentation.

> The Generalized Gamma model is a more adequate
model for the noisy speech than the Gaussian one.
Offline DISTBIC-I" = DISTBIC + GI'D offers better

discriminative ability for phone segmentation.

» ABF2 and BICC yield better results than BIC for phone
segmentation. ICONMP and its robust variant ICOMP-R
provide the best results for phone segmentation.

» Spectral graph theory improves speaker diarization.
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