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 We are interested to 

achieve similar levels of 

ability in robots as well

Motor control

 Biological motor systems 

show a remarkable level 

of adaptability and 

robustness under 

different conditions



 Usually model is derived 

using knowledge of the 

physical properties of the 

robot

Motor control / dynamics

 High performance control 

requires an accurate 

dynamics model
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 Alternative is to learn the 

dynamics

Learning dynamics 

 Accurate derivation of 

dynamics may not be 

possible due to:

 Unmodeled effects

 Inaccurate knowledge 

or complete lack of 

knowledge of physical 

parameters
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Nonstationarity

 Dynamics may change 

due to interaction with 

different environments 

and objects. Varying 

context of the dynamics.

21

 Model needs to be 

adapted every time the 

context changes

 The context is in most 

cases not directly 

observed



 However, if dynamics 

switch back and forth, 

readapting every time is 

suboptimal. Need to cope 

with recurring contexts.

Goals 

 What happens with novel 

contexts? We would like 

to generalize from seen 

contexts to novel 

contexts.

1->2->1?



Overview

1. Learning single context dynamics for control 

2. Learning multiple models for a set of recurring contexts

3. Learning a single model with continuous latent 

contextual variables for a range of varying contexts

4. Learning a single model with observed continuous 

contextual variables



Learning single context dynamics 

TEXP
H2:11:2

Learning the inverse model for a single context is (relatively) 

straight forward since all data is observed, we just need a learning 

algorithm

Inverse dynamics for a single context



Locally Weighted Projection Regression

 Pairs of linear models and  
gaussian locality kernels

 Overall prediction weighted 
sum of individual models’ 
predictions

 Local model PLS

 Online learning of local 
projection directions, 
regression coefficients and 
kernel shape

 Provides input dependent 
confidence bounds

 Appropriate for motor learning 
tasks in high dimensional 
spaces

Vijayakumar, D’Souza and Schaal. Incremental online learning in high dimensions. 

Neural Computation, 17:2602-2634



…and using it for control



Example of learning dynamics for 

control

 Simple 3 
Dof arm

 Sinusoidal 
movement 
task

 Switch from 
PD to 
composite 
control at 
iteration 4

 Results 
averaged 
over 10 
trials



Recurring contexts?

 Tracking error behaves similarly



Multiple Models

Learn one model for each different context and 

switch between them appropriately

Studies claim that the CNS uses multiple models and 

switches between them. 



Existing multiple models approaches

• MMST (Narendra) : limited learning, prior knowledge 

on possible dynamics required

• MPFIM (Wolpert) : pairs of forward and inverse 

models, only shown to work with linear dynamics 

models, learning with online gradient descent

•MOSAIC (Haruno) : similar to MPFIM, HMM used to 

smooth context estimates, trained with EM algorithm, 

shown to work with linear dynamics



Multiple model formulation



Incorporating temporal context



Inference and learning

 Inference simply involves using Bayes rule / 

standard graphical model mechanisms (Viterbi 

alignment / filtering / smoothing)

 Learning can be performed using EM (needs to 

be slightly modified when using LWPR)



Experiments: context estimation

 Random 
switching 
between 10 
contexts.

 Results 
averaged 
over 5 trials



Experiments: learning

 Random switching 
between 2 contexts.

 Executed EM.

 Use of local models 
poses some 
difficulties.

 Need to switch from 
smoothed estimates 
to filtered estimates 
in the E-step. 

 Confidence bounds 
used. 



Other multiple model approaches

Previous methods

 Have limited or no learning 

ability (Multiple Model 

Switching and Tuning, 

Narendra)

 Have not been shown to work 

with non-linear dynamics

(Modular Selection and 

Identification for Control, 

Wolpert and Kawato)

Our approach

 Is able to learn nonlinear 

dynamics and uses LWPR, a 

robust local based nonlinear 

regression algorithm

 Modified EM algorithm in 

order to deal with the 

problems induced by using a 

local regression algorithm



Issues with the multiple model scenario

 How can we generalize to new contexts?

 What is the appropriate number of contexts?

 What if there is an infinite number of possible contexts? 

Instead of a set of models use a single one with 

additional contextual information as input



Reformulating the model

The discrete contextual variable is 
replaced by a set of continuous 
variables



Learning the augmented model

 Use EM like before possible but too difficult 

 How many variables?

 When possible it is better to use prior 

knowledge on the relationship of proper 

contextual variables to the dynamics



Special case: object manipulation

 This is possible in the case of manipulation of different 

objects (linear relationship of dynamics to a properly 

defined set of inertial parameters)

 Yij are nonlinear functions of the joint angles, velocities 

and accelerations.

 The vector πj holds the inertial parameters of the jth

link (mass, positions of center of mass and inertia 

tensor)



Special case: object manipulation

 Let us consider the dynamics of the context m.

 The yij s do not depend on the context, only on 

kinematic properties that do not change: 

 Only the inertial parameters of the last link change 

between contexts:



Obtaining the augmented model

 Thus, the model for the mth context can 

be written as:



Obtaining the augmented model

 Compiling the dynamics equations for all joints:



Obtaining the augmented model

 Using πj  as the continuous context variables the 
augmented model can be:

or

Obtaining the augmented model means obtaining 

the matrix Y



Obtaining the augmented model

 If we have M learned reference models τ^1, τ^2 

.. τ^Μ, together with their corresponding context 

variables π^1,π^2…π^Μ we can obtain Y as:



Obtaining the augmented model



Using the augmented model

 Infer the current inertial parameters in a 

probabilistic manner similar to the discrete case. 

Can use:

1. Non –temporal setting

2. Temporal setting (similar to kalman filtering) 

 Use the estimated inertial parameters to get the 

feedforward command



Experiments: continuous context

 Simulated 3 degree of freedom arm

 Randomly varying mass and shape.

 Inferred 3 inertial parameters

 Used the estimates for control

 5 runs 



Results

Ratio of feedback to composite command over the 3 joints was 

0.1101 with std. 0.0176



Unavailability of reference models’ 

intertial parameters

 Possible to reformulate so that reference models’ inertial 

parameters are not required.

 Estimated context is a linear transformation of the actual 

context.

 Ratio of feedback to composite command 0.0893, std. 0.0239



Remarks

 This method is related to classical load estimation work 

on robotics 

 Some inertial parameters cannot be estimated 



Using tactile sensing to estimate the 

context

 Simplistic model of tactile 

sensing is linear in the 

mass of the manipulated 

object

 Use this prior knowledge 

to generalize across 

context estimates

 Use context estimates 

with an augmented 

dynamics model for 

control



Using tactile sensing to estimate the 

context

 Simulation of DLR arm

 Both sensor and 

augmented inverse 

models learned

 Three trials

 nMSE of estimates 

around 0.02



Unknown nature of context

 Relationship of context to dynamics may be unknown, 
possibly nonlinear

 Using the same temporal graphical model and just using 
a nonlinear augmented inverse model, we obtain a 
nonlinear state space model

 Exact inference and maximum likelihood learning not 
possible

 Possible choices for inference and learning include 
Extended Kalman Filtering, variational and Monte Carlo 
methods

 We use a variant of Monte Carlo EM (only best particle 
used for training).



Context estimation using a nonlinear 

state space model

 Simulation of simple 

1DOF arm

 100 particles 

 50 EM iterations

 Had to fix transition 

model in order to 

get a nice 

representation of 

the latent variable 

(mixture of uniform 

and gaussian with 

low noise variance).



An alternative

 Previous approaches require to perform context estimation before 
applying a control command

 Could use an augmented model with observed variables that 
convey information about the context indirectly

 Tactile for varying loads

 Time delayed state transitions and commands. Essentially an 
autoregressive model

 Higher dimensional problem but context estimation is not required 

anymore



Results using the tactile augmented 

model 

 DLR arm

 Training stops at iteration 80



Results using the autoregressive 

model 

 Artificial arm 3DoF arm

 Training stops at iteration 100



Summary

 Learning of single model for stationary and non-
stationary dynamics

 Multiple models for a set of recurring dynamics

 Continuous latent variable model for a range of 
contexts
 Linear state space model for a scenario when the 

nature of the context is known

 Nonlinear state space model when the nature of the 
context is not known

 Augmented model with variables that convey 
contextual information indirectly and are 
observed



Thank you! 

 Questions?

 Comments?


