

The Collective Experience of Empathic Data Systems

15 February 2012

Using Attributed Affect for Implicit Sentiment Image Tagging & Content-based Retrieval

K.C. Apostolakis & P. Daras Informatics & Telematics Institute Centre for Research & Technology Hellas

© CEEDs Consortium Confidential 2010-2014

Implicit Human-Centred Tagging (IHCT)

- Attempts to obtain user behavioural response for tagging purposes
 - Effectively reduces user effort in contrast to explicit (textual) annotation
- Challenges (Pantic & Vinciarelli, 2009)
 - Effort to include observed user reactions & behaviour, as well as implicit tags to the data tagging & retrieval loop
 - Develop behaviour analyzers that can attain accurate and reliable results even on audiovisual sensors built in commercial computers

Psychological Framework (Russell, 2003)

Core Affect

- 2-D space defined by two components
 - Valence Amount of pleasure experienced at any given moment
 - Arousal Activation level in preparation for action
 - e.g. feeling *delighted*, *bored*, etc.
- Perception of Affective Quality
 - To perceive stimuli in terms of their emotional properties

e.g. *delicious* meal, *boring* lecture etc.

Psychological Framework (Russell, 2003) Attributed Affect

- Subconscious attempt to attribute change in Core Affect to its perceived cause
- The stimulus that is identified as the cause becomes the "Object"
 - Attention is shifted towards the "Object"
 - Behaviour is directed at the "Object"
- Defines Emotional Awareness
 Main route to the affective quality of the stimulus
 - stimulus

Introducing Attributed Affect to IHCT problem

- □ Obtain user *affective response* (Core Affect)
- Obtain the "Object" via gaze information
 Identify specific stimulus depicted in the image, where the users have focused their attention on
- Attribute affective response to the "Object"
- Image annotated with appropriate affective tag
- A new image containing the "Object" is automatically annotated with the assoc. label

Introducing Attributed Affect to IHCT problem Advantages (1/4)

- Automatic annotation of large portions of the image database by looking at a single image
 User looks at image depicting a spider and experiences a jittery reaction
 - Spider identified & attributed as the cause → spider considered **jittery** by the user
 - Framework annotates all images in the collection depicting spiders with the jittery affective label
 - User most likely to experience the same reaction when presented with the same stimuli

Introducing Attributed Affect to IHCT problem Advantages (2/4)

- Retrieval & Recommendation readily available through annotated stimulus
 - User looks at images of cars, trying to locate models that spark his interest
 - Several cars are identified as causing feelings of satisfaction others are dismissed
 - Annotation of all images in the collection, depicting either dismissing or pleasing stimuli
 - Retrieval of images that were annotated as 'pleasing'

Introducing Attributed Affect to IHCT problem Advantages (3/4)

- Annotation based on user personal experience
 - Users can annotate content specifically to their preferences
 - Not all spiders are considered *jittery* by all people!
 - Several culture-dependant points addressed
 - Something funny here might be considered offensive somewhere else
 - Personalized recommendation of like-valenced content
 - Horror movies scare me! \rightarrow don't show me Horror movies!
 - I love Horror movies! \rightarrow Show me more!

Introducing Attributed Affect to IHCT problem Advantages (4/4)

- IHCT based on Attributed Affect can be applied to multitude of setups, as long as there's a means to obtain gaze and affect information
 - Many methods for obtaining user affective response
 - Facial Expressions, Blood Pressure, Body Temperature, EMC, etc.
 - Many methods for obtaining gaze information
 - Single Image, Stereo, Special apparatus (eyeglasses)
 - Most affordable setup: Commercially available computer systems with a single low-res camera
 Today's Laptop computers!

Input received via Affect Recognition and Gaze Tracking modules

- Affect Recognition module identifies affective response and generates affective label → tag
- Gaze Tracking module tracks user's eye gaze and generates gaze point on the image display screen
- Segmentation module receives gaze point and generates a foreground image of the viewed stimulus → the "Object"
- Output contains the "Object" (foreground image) and affective quality (tag)
 - The "Object" → retrieval
 - Affective Quality → annotation

Obtaining User Affective Response (1/5)

- Affective Response obtained via Facial Expression Analysis
 - Available to single low-res webcam setup
- Facial Action Coding System (FACS) (Ekman & Friesen 1978)
 - Deconstructs every anatomically possible facial expression into a set of Action Units (AUs)
 - AUs describe the movement of individual facial muscle groups
 - **D**ifferent comb. of AUs \rightarrow different expressions

Obtaining User Affective Response (2/5)

- Identifying AU activation
 - Track key facial features corresponding to AU muscle groups
- Active Shape Model (ASM, Cootes & Taylor 1995)
 - Statistical model describing the shape of an object
 - Capable of deforming to fit to a new instance of the object
- Applications
 - Face tracking, Hand Tracking, Object Fitting, X-Ray Segmentation, etc...

Obtaining User Affective Response ASM Fitting (1/2)

- Facial Active Shape Model Built out of 161 frontal face images
 - Picked out of 5 freely available databases

Talking Face¹

IMM²

BioID³

MUCT⁴

IR Marks⁵

- Manual annotation of 68 landmarks to obtain face shape
- ¹http://personalpages.manchester.ac.uk/staff/timothy.f.cootes/data/talking_face/talking_face.html

²http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=922

³http://support.bioid.com/downloads/facedb/index.php

⁴http://www.milbo.org/muct/

⁵http://mplab.ucsd.edu/wordpress/?page_id=1207

Obtaining User Affective Response ASM Fitting (2/2)

The Framework Obtaining User Affective Response (3/5)

TABLE I
ESTIMATED VALENCE – AROUSAL MAPPING TO AU ACTIVATION DURING
Posed Display Of Certain Facial Expressions

Facial Expression		Corresponding Action Units (AU)	Mean Valence Estimate for both sexes	Mean Arousal Esti- mate (for both sexes)	
Happiness		6 + 12	+ 2.990	+ 2.140	
Anger		4 + 7 + 23	- 1.685	+ 1.240	
Fear		1 + 4 + 5 + 25	- 2.215	+ 1.475	
Surprise		1 + 2 + 26	- 0.010	+ 1.515	
Sadness		1 + 4 + 15	- 2.190	- 0.605	
Neutral		-	+ 0.025	- 1.205	
Ad U	rtion Init	Action Unit Name	Corresponding Landmark(s)	Effect on Valence	Effect on Arousal
A. U	rtion Init 12	Action Unit Name Lip Corner Puller	Corresponding Landmark(s) 48, 54	Effect on Valence +	Effect on Arousal ↑
Ac U	rtion Jnit 12 15 L:	Action Unit Name Lip Corner Puller ip Corner Depressor	Corresponding Landmark(s) 48, 54 48, 54	Effect on Valence + -	Effect on Arousal ↑ ↓
ـــــــــــــــــــــــــــــــــــــ	etion Init 12 15 Le 1	Action Unit Name Lip Corner Puller ip Corner Depressor Inner Brow Raiser	Corresponding Landmark(s) 48, 54 48, 54 18, 24	Effect on Valence + – None	Effect on Arousal ↑ ↓ ↑
	etion Jnit 12 15 L: 1 2	Action Unit Name Lip Corner Puller ip Corner Depressor Inner Brow Raiser Outer Brow Raiser	Corresponding Landmark(s) 48, 54 48, 54 18, 24 16, 22	Effect on Valence + - None None	Effect on Arousal ↑ ↓ ↑
Ad U	etion Init 12 15 L: 1 2 4	Action Unit Name Lip Corner Puller ip Corner Depressor Inner Brow Raiser Outer Brow Raiser Brow Lower	Corresponding Landmark(s) 48, 54 48, 54 18, 24 16, 22 (18 + 20), (24 + 26)	Effect on Valence + - None None -	Effect on Arousal ↑ ↓ ↑ ↑

Obtaining User Affective Response (4/5)

Procedure:

D Take snapshot of "neutral" expression

- Fit ASM and save "neutral" landmark positions
- Calculate landmark distances from the eye line

• For every consequent frame:

Fit ASM

- Calculate landmark distances from the eye line
- Calculate AU intensity from the distance differences
- Calculate valence arousal according to Eqs:

Valence =
$$AU \ 12 - (\frac{AU \ 15 + AU \ 4}{2})$$

Arousal =
$$-0.30125 + \frac{1.30125}{5}(AU1 + AU2 + AU4 + AU12 + AU26) - AU15$$

The Framework Obtaining User Affective Response (5/5)

- Core Affect value normalized and placed inside 2D Affective Circumplex
- Extraction of affective label via Yik et al (2011)

The Framework Gaze Tracking (1/3)

- □ Single Image Gaze Tracking & Gaze Point Est.
 - Locate the iris centre (pupil) P & eye corners E1, E2
 - Map current information on P, E1, E2 to 2D screen coordinates
 - Requires calibration step
- Eye corners located via ASM (27, 29, 32, 34)
 - Generation of Pupil Search Area (PSA)
 - Pupil is certain to be contained within PSA

The Framework Gaze Tracking (2/3)

Locate Pupil via Automatic Adaptive Thresholding

- **D** Thresholding
 - Convert greyscale PSA image to binary image using threshold
 - Threshold value determines which pixels are painted white
 (1) and are part of the object
- Adaptive
 - Threshold value specific to each frame
 - Adaptation to lighting, position changes
- Automatic
 - Thresholds in [0, 255] applied iteratively until one is chosen

Gaze Tracking Automatic Adaptive Thresholding

The Framework Gaze Tracking (3/3)

Gaze Point Estimation via Linear 2D Mapping

- Calibration
 - Calibration points displayed on the screen to collect info
 - Users fixate their gaze on each calibration point

■ Linear 2D Mapping

- Pupil centre positions P_i (x_i, y_i) stored for each calibration point K_i (α_i, β_i) during calibration
- Minimum of 2 calibration points K_1 (α_1 , β_1), K_2 (α_2 , β_2)
- Every subsequent P' (x', y') mapped to screen coordinates (α', β') via Eqs:

$$\alpha' = a_1 + \frac{x' - x_1}{x_2 - x_1}(a_2 - a_1)$$

$$\beta' = \beta_1 + \frac{y' - y_1}{y_2 - y_1} (\beta_2 - \beta_1)$$

The Framework Identifying the "Object" (1/3)

- "Object" identified via image segmentation
- Segmentation algorithms
 - Require explicit designation of foreground background pixel seeds
 - Even more difficult to unobtrusively implement using input obtained via eye tracker (Sadeghi et al, 2009)
 - User shouldn't need to bother with explicit fg/bg designation
 - User should look at the object depicted in the image
 - The segmentation algorithm should take over the rest

GrabCut Segmentation

Identifying the "Object" GrabCut Segmentation Algorithm (1/3)

□ GrabCut

- Interactive foreground object extraction algorithm
- Demonstrates exceptional extraction quality
- **D** Requires minimal user effort
- Input
 - A rectangular area around the object
 - Pixels inside \rightarrow certain foreground
 - Pixels outside \rightarrow certain background
 - More elaborate interactions available
 - Explicit fg/bg designation supported

Identifying the "Object" GrabCut Segmentation Algorithm (2/3)

GrabCut Algorithm

- Image pixels outside rectangle assigned to bg class
 Construct Gaussian Mixture Model (GMM)*
- Image pixels inside rectangle assigned to fg class
 - Construct GMM
- Iterate until convergence:
 - Reassign fg pixels according to fg/bg GMMs
- Optional: account for user designated fg/bg pixels

^{*}Parametric probability density function represented as a weighted sum of Gaussian component densities. Among the most statistically mature methods for clustering.

Identifying the "Object" GrabCut Segmentation Algorithm (3/3)

The Framework Identifying the "Object" (2/3)

- Application to Framework
 - When the user's gaze point on screen is found to intersect one of the images displayed, a rectangular ROI is automatically generated around it
 - Ensures the unhindered process of image annotation
- Shortcomings & Improvements
 - Excessive or incomplete segmentations when object is non-convex or not entirely contained within ROI
 - Solution: modify ROI width & height (mouse wheel)
 - Modified GrabCut versions (Chen et al, 2008)

The Framework Identifying the "Object" (3/3)

© CEEDs Consortium Confidential 2010-2014

The Framework Recognition & Retrieval

- In order to annotate images containing the "Object", the latter needs to be recognized
- Standard Bag of Words pipeline (BoW)
 - **Bag of Features**
 - **Bag of Keypoints**
- Pipeline consists of 3 stages
 - **■** Region descriptors of the image are obtained
 - Descriptors projected onto vocabulary → codebook frequency histograms
 - Classification of histograms

Recognition & Retrieval Bag of Words Pipeline (1/4)

30

Recognition & Retrieval Bag of Words Pipeline (2/4)

- Obtaining Image Region Descriptors
 - Features describe extracted local image patches called image descriptors
 - SIFT Scale Invariant Feature Transform
 - Spatial descriptor constructed out of 4x4 image sub-regions
 - Responses are Gaussian derivatives
 - Achieves best performance (matching / recognition)
 - SURF Speeded Up Robust Features
 - Based on SIFT
 - Responses are simple operations (sums / subs)
 - Faster feature detection & descriptor extraction

Recognition & Retrieval Bag of Words Pipeline (3/4)

- Visual Vocabulary
 - Trained from a set of descriptors (SURF) extracted in a previous step
 - Once all train descriptors have been added → clustering via kmeans produces cluster centres
- Descriptor projection onto Visual Vocabulary
 - Each descriptor matched to the nearest visual word (cluster centre) in the vocabulary
 - Result is a frequency histogram
 - i-th bin of histogram → frequency of i-th vocabulary word in the image

Recognition & Retrieval Bag of Words Pipeline (4/4)

- Histogram Classification
 - Choice of classifier
 - Naïve Bayes Classifier
 - Benchmark for both accuracy & performance
 - Support Vector Machine (SVM)
 - Based on x² kernel
 - Most accurate results
 - Not the fastest option
 - Based on Radial Basis Function (RBF) kernel
 - Nearly achieve real-time performance
 - Accuracy loss of approx. 10%

\square BoW \rightarrow Best results on large scale benchmarks

Experimental Results

Application Development
 Obtaining Paris Database
 OpenCV¹
 ASMLibrary SDK²
 Framework Evaluation
 Implicit Tagging
 Object Retrieval
 Available via FTP³

¹Current version (2.3.1.) available from http://opencv.willowgarage.com/wiki/ under a BSD license. ²Current version (6) available under the MIT license from http://code.google.com/p/asmlibrary ³http://ftp.iti.gr/pub/incoming/sentiment.zip

Experimental Results Application Development (1/3)

- Paris Database
 - □ In-house
 - Self-obtained
 - Most frequently appearing distinct image categories returned by Google Images when "Paris" is typed in
 - 1125 images split into 5 categories (225 images)
 - Eiffel Tower
 - Paris Hilton
 - Notre Dame
 - Louvre
 - Arc de Triomphe

Experimental Results Application Development (2/3)

Experimental Results Application Development (3/3)

Implementation

■ Affective Response recognition

- Face detection via OpenCV Haar cascades
- ASM Fitting via ASMLibrary on detected sub-image

■ Single Image Gaze Tracking

8-point calibration

- Segmentation
 - Automatic ROI generation

BoW

- 4096-word dictionary
- RBF-kernel SVM classifier

Experimental Results Affective Feedback Classification

- □ 15 participants
- Results show the framework achieves an approximate 70% correct affective feedback classification performance

Experimental Results Foreground Object Classification

- 95% of the images undergone segmentation were classified to one of the 5 available categories
- Overall classification performance approximately reaches 76%

Experimental Results Why the significant drop?

Future Endeavours...

Improvements
 Framework applicability
 Content-based Recommender Systems

- Tagging & Retrieval on Complex Image Scenes
- Object recognition and display in immersive 3D environments

Thank You! Questions?

