Resource Management in Mobile Networks

Georgios Theodoridis Electrical and Computer Engineer, PhD

Centre for Research & Technology - Hellas Informatics & Telematics Institute

Table of Contents

Introduction

- Research Area
- Traffic Load Management Mechanisms
- Mobile-WiMAX

CAC at the M-WiMAX Downlink

- Problem Formulation
- Average System Behaviour
- Per Connection Behaviour
- CAC Implementation

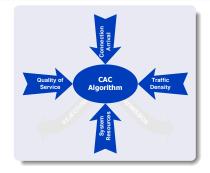
3 RRM at the M-WiMAX Uplink

- Problem Formulation
- Proposed RRM Algorithm RRM_{UL}
- Theoretical Analysis
- Quantitative Evaluation

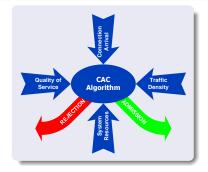
Research Area Traffic Load Management Mechanisms Mobile-WIMAX

Research Area

- Development of techniques for increasing the mobile networks' capacity while satisfying the requested Quality-of-Service (QoS)
- Incorporating the configuration and variations of the Physical Layer into the decision criteria of the Resource Management mechanisms
- Connection Admission Control: Precise computation of the connections' needs in bandwidth
- Radio Resource Management: Efficient allocation of the available spectrum

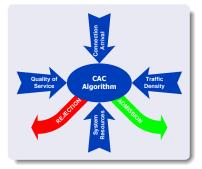

Research Area Traffic Load Management Mechanisms Mobile-WIMAX

- Congestion prevention
 mechanism
- Acceptance/Rejection of new connections based on the anticipated resource availability


Research Area Traffic Load Management Mechanisms Mobile-WIMAX

- Congestion prevention
 mechanism
- Acceptance/Rejection of new connections based on the anticipated resource availability

Research Area Traffic Load Management Mechanisms Mobile-WIMAX


- Congestion prevention
 mechanism
- Acceptance/Rejection of new connections based on the anticipated resource availability

Research Area Traffic Load Management Mechanisms Mobile-WIMAX

Connection Admission Control - CAC

- Congestion prevention mechanism
- Acceptance/Rejection of new connections based on the anticipated resource availability

• CAC policy is formulated as a tradeoff between:

Research Area Traffic Load Management Mechanisms Mobile-WIMAX

- Inefficient CAC Implementations
- Inability to perform accurate predictions for the system's future states
 - Stochastic nature of the connections' arrival-termination process
 - Variation of data generation rate at Application Layer
 - Dependence of a connection's bandwidth requirements upon the Physical Layer performance

Research Area Traffic Load Management Mechanisms Mobile-WIMAX

Radio Resource Management - RRM

- RRM routines follow in time the execution of the CAC mechanism
 - Execution upon already admitted connections
- Dynamic allocation of the available resources among the active connections
 - Spectrum of the physical medium
 - Transmission power

Research Area Traffic Load Management Mechanisms Mobile-WIMAX

Radio Resource Management - RRM

2 cases of RRM triggering

Under conditions of congestion

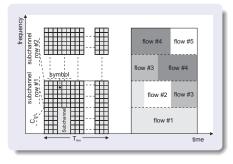
- Failure of the CAC mechanism Congestion Prevention
- Allocation of the insufficient resources among the competing connections, according to several prioritization criteria
 - Maximum utilization of the network's resources Maximum operator's revenue
 - Connections' QoS requirements (sustainable datarate, delay, jitter tolerance)
 - Fairness
 - Class priority

Under conditions of normal operation

Resource saving for servicing additional connections - Capacity increase

Research Area Traffic Load Management Mechanisms Mobile-WIMAX

WiMAX Family of Standards


Worldwide Interoperability for Microwave Access

- IEEE 802-16d 2004
 - Current standard for Fixed Wireless MAN Fixed-WiMAX
 - Medium Access: OFDM
 - Frequency Band: 2-11GHz
 - NLOS Non Line-Of-Sight communication
 - Maximum coverage 50km
 - Average Datarate: 75Mbps
 - Supports mesh architecture
- IEEE 802.16e 2005
 - Current standard for Mobile Wireless MAN M(obile) WiMAX
 - Supports mobility
 - Medium Access: Scalable-OFDMA
 - Hybrid Automatic Repeat-reQuest (HARQ)
 - Adaptive Antenna Systems (AAS) and MIMO technology
 - Turbo Coding and Low-Density Parity Check (LDPC)
 - One extra QoS class for VoIP applications

Research Area Traffic Load Management Mechanisms Mobile-WIMAX

M-WIMAX - Key Functions Physical Layer - OFDMA

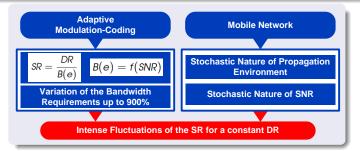
- Division of the aggregate bandwidth into C_{tot} orthogonal and partially overlapping subcarriers
 - *C*_{dat} subcarriers for application data transmission and the rest for signalling
- Division of the timeline into successive timeframes of duration T_{fm}
 - Segmentation of each timeframe into *L*_{tot} timeslots
- Minimum spectrum allocation unit: subchannel
 - 2-dimension combination of C_{sch} subcarriers and L_{sch} timeslots

$$SR_{max} = rac{C_{dat} \cdot L_{tot}}{T_{frm}}$$
 symbols/sec

Research Area Traffic Load Management Mechanisms Mobile-WIMAX

M-WiMAX - Key Functions

Physical Layer - Adaptive Modulation-Coding (AMD)

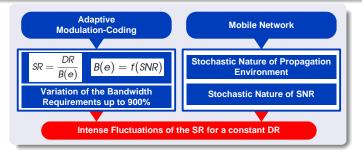

- The Modulation-Coding combination is chosen as a function of the SNR
- 7 Modulation-Coding Levels (MCL), $e \in \mathbf{E} \equiv \{1, \dots, 7\}$
 - SNR_{thr,e}: Threshold SNR for MCL= e
 - B(e): Data bits per symbol (Data Link Layer data-stream, before Physical Layer coding), for MCL= e
 - Required symbol-rate for achieving datarate DR bps:

$$SR = rac{DR}{B(e)}$$
 symbols/sec

MCL (e)	Modulation & Coding	Data Bits per Symbol (B(e))	Required SNR (SNR _{thr, e} in dBs)
1	BPSK & 1/2	0,5	6,4
2	QPSK & 1/2	1	9,4
3	QPSK & 3/4	1,5	11,2
4	16QAM & 1/2	2	16,4
5	16QAM & 3/4	3	18,2
6	64QAM & 2/3	4	22,7
7	64QAM & 3/4	4,5	24,4

Problem Formulation Average System Behaviour Per Connection Behaviour CAC Implementation

CAC Failure at M-WiMAX systems

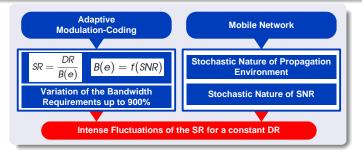


- Degraded effectiveness of CAC's implementations
 - Difficulties in performing safe predictions of the connections' future bandwidth requirements
 - Unjustifiable increase in Blocking Probability
 - Frequent occurrence of congestion phenomena

Need for a precise estimation of the evolution of the aggregate Symbol Rate along time

Problem Formulation Average System Behaviour Per Connection Behaviour CAC Implementation

CAC Failure at M-WiMAX systems



- Degraded effectiveness of CAC's implementations
 - Difficulties in performing safe predictions of the connections' future bandwidth requirements
 - Unjustifiable increase in Blocking Probability
 - Frequent occurrence of congestion phenomena

Need for a precise estimation of the evolution of the aggregate Symbol Rate along time

Problem Formulation Average System Behaviour Per Connection Behaviour CAC Implementation

CAC Failure at M-WiMAX systems

- Degraded effectiveness of CAC's implementations
 - Difficulties in performing safe predictions of the connections' future bandwidth requirements
 - Unjustifiable increase in Blocking Probability
 - Frequent occurrence of congestion phenomena

Need for a precise estimation of the evolution of the aggregate Symbol Rate along time

Problem Formulation Average System Behaviour Per Connection Behaviour CAC Implementation

Aggregate Symbol Rate vs. MCL Distribution

• Mean value of the aggregate symbol transmission rate

$$SR_{\mathbf{H}, \alpha \nu} = \left\{ P[MCL = 0] \cdot 0 + \sum_{e=1}^{7} \frac{P[MCL = e]}{B(e)} \right\} \cdot \sum_{h=1}^{H} DR_{h}$$

• Calculation of the probability that a connections resides within any of the 7 available MCLs: P[MCL = e]

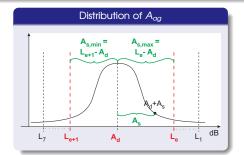
• Average connections' percentage per MCL

$$P[MCL = e] = \begin{cases} P[SNR < SNR_{thr,e+1}] &, e = 0\\ P[SNRt_{thr,e} \leq SNR < SNR_{thr,e+1}] &, 1 \leq e \leq 6\\ P[SNR \geq SNR_{thr,e}] &, e = 7 \end{cases} \qquad \left\{ \begin{cases} SNR = S_{Tx} - A_{\alpha g} - N_0\\ L_e = S_{Tx} - SNR_{thr,e} - N_0 \end{cases} \right\}$$

$$P[MCL = e] = \begin{cases} P[A_{ag} > L_{e+1}] & , e = 0\\ P[L_{e+1} < A_{ag} \le L_e] & , 1 \le e \le 6\\ P[A_{ag} \le L_e] & , e = 7 \end{cases}$$

Problem Formulation Average System Behaviour Per Connection Behaviour CAC Implementation

The Three Components of Total Propagation Losses


- Splitting the aggregate losses A_{ag} into its comprising components
 - A_d: Free space losses
 - Function of the distance and the frequency: $A_d = f(d, f)$
 - The predominant factor of the total attenuation Large coverage area of M-WiMAX (macrocell)
 - $\bullet\,$ Very slow variations against time: 1dB for distance change of $\approx 6\%$
 - As: Shadowing
 - Normal distribution with $\overline{A_s} = 0 dB$ and $\sigma_{A_s} \in [6 dB, 12 dB]$
 - Smooth variations against time: High correlation between successive timeframes
 - A_f: Fast Fading due to multiple paths
 - Very low correlation between successive timeframes
 - Mitigation of the A_f fluctuations through extensive sampling

Problem Formulation Average System Behaviour Per Connection Behaviour CAC Implementation

Distribution of the Total Propagation Losses

• The distribution of MCL is almost exclusively dictated by the evolution of A_d and A_s against time

$$A_{ag} = A_d + A_s$$

$$P[L_{e+1} < A_{ag} \le L_e] = \int_{A_{d_m}}^{A_{d_M}} P[A_d = A_{d_x}] \cdot P[L_{e+1} - A_{d_x} < A_s \le L_e - A_{d_x}] dA_{d_x}$$
$$= \int_{A_{d_m}}^{A_{d_M}} P[A_d = A_{d_x}] \left(\int_{L_{e+1} - A_{d_x}}^{L_e - A_{d_x}} pdf(A_s) dA_s\right) dA_{d_x}$$

Problem Formulation Average System Behaviour Per Connection Behaviour CAC Implementation

Distribution of the Total Propagation Losses

- Shadowing losses A_s follow normal distribution
 - The *cumulative distribution function* cannot be analytically computed as a function of its limit
 - The continuous space of A_d ($A_d \in [A_{d_m}, A_{d_M}]$) is quantized with step $a \longrightarrow 0$ into $b \longrightarrow \infty$ discrete, successive values

$$egin{aligned} \mathsf{A}_{d_x} \in \{\mathsf{A}_{d_m}, \mathsf{A}_{d_m} + a, \dots, \mathsf{A}_{d_m} + (b-2)a, \mathsf{A}_{d_M}\} \ x = \{1, \dots, b\} \end{aligned}$$

• The probability that the total losses fall within a given space

$$P[L_{e+1} < A_{ag} \leq L_e] = \sum_{x=1}^{b} \left\{ P[A_d = A_{d_x}] \left(\int_{L_{e+1} - A_{d_x}}^{L_e - A_{d_x}} pdf(A_s) dA_s \right) \right\}$$

Problem Formulation Average System Behaviour Per Connection Behaviour CAC Implementation

Distribution of the Total Propagation Losses

• A_d : Discrete variable

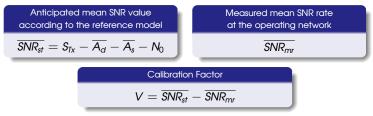
$$P[A_d = A_{d_x}] = P[A_d \le A_{d_x}] - P[A_d \le A_{d_x}^-]$$

• For quantization step $a = (A_{d_x} - A_{d_{x-1}}) \longrightarrow 0$

 $P[A_{d} = A_{d_{x}}] = P[A_{d} \leq A_{d_{x}}] - P[A_{d} \leq A_{d_{x-1}}]$

• A_d : Genuinely ascending function of the distance, with $A_d = f(d)$

$$P[A_d \leq A_{d_x}] = P[d \leq d_x] \text{ ,} d_x = f^{-1}(A_{d_x}) \in [d_m, d_M]$$

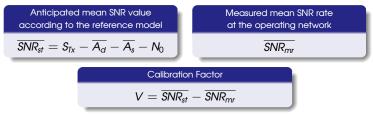

Uniform spatial distribution of the traffic sources

$$P[A_{d} = A_{d_{x}}] = \frac{(f^{-1}(A_{d_{x}}))^{2} - (f^{-1}(A_{d_{x-1}}))^{2}}{d_{M}^{2} - d_{m}^{2}}$$

Problem Formulation Average System Behaviour Per Connection Behaviour CAC Implementation

Calibration Routine

- The reference model is built upon statistical analysis (*pdf*, mean rate, variation)
- Deviation of the average operational state of the real system from the reference model



• Finally, the MCL distribution (P[MCL = e]) is calculated for

Problem Formulation Average System Behaviour Per Connection Behaviour CAC Implementation

Calibration Routine

- The reference model is built upon statistical analysis (*pdf*, mean rate, variation)
- Deviation of the average operational state of the real system from the reference model

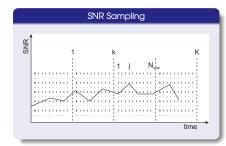
• Finally, the MCL distribution (P[MCL = e]) is calculated for

$$L'_{e} = L_{e} - V, \forall e \in \{1, \dots, 7\}$$

Problem Formulation Average System Behaviour Per Connection Behaviour CAC Implementation

Anticipated Behaviour Per Connection

• Estimation of the symbol transmission rate for every connection $h \in \{1, \ldots, H\}$ separately


$$SR_{H,pr} = \sum_{h=1}^{H} SR_h = \sum_{h=1}^{H} \frac{DR_h}{B(MCL_{h,pr})}$$

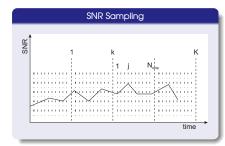
- Exploitation of the available SNR sampling
- Short-term prediction of the MCL per connection
 - Filtering mechanism for suppressing any transit phenomena
 - Impact of shadowing (A_s) and fast fading (A_f)
 - Abrupt changes of A_d due to temporal distance fluctuations in regard to the Base Station
 - Isolation of the primary SNR pattern
 - Dependent solely on the distance evolution against time

Problem Formulation Average System Behaviour Per Connection Behaviour CAC Implementation

Filtering Routine of the SNR samples

- Monitoring of every connection $h \in \mathbf{H}$ at consecutive timeframes T_{trm} : $1_h, \ldots, k_h, \ldots, K_h$
- SNR sampling with period $T_{smp} < T_{frm}$
- $N_{smp} = T_{frm}/T_{smp}$ sample per timeframe
- Calculation of the mean SNR for every timeframe k_h:

$$SNR_{h,k,av} = \frac{1}{J_h + 1} \cdot \left\{ SNR_{h,k-1,av} + \sum_{j=1}^{J_h} SNR_{h,k,j} \right\}$$


• Discarding all samples outside the space $SN_{h,k,av}\pm Q\%$

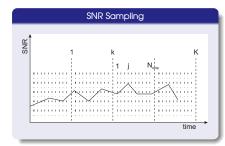
$$SNR_{h,k,j} \in [SNR_{h,k,av} - Q\%, SNR_{h,k,av} + Q\%]$$

Problem Formulation Average System Behaviour Per Connection Behaviour CAC Implementation

Filtering Routine of the SNR samples

- Monitoring of every connection $h \in \mathbf{H}$ at consecutive timeframes T_{frm} : $1_h, \ldots, k_h, \ldots, K_h$
- SNR sampling with period $T_{smp} < T_{frm}$
- $N_{smp} = T_{frm}/T_{smp}$ sample per timeframe
- Calculation of the mean SNR for every timeframe k_h:

$$SNR_{h,k,av} = \frac{1}{J_h + 1} \cdot \left\{ SNR_{h,k-1,av} + \sum_{j=1}^{J_h} SNR_{h,k,j} \right\}$$

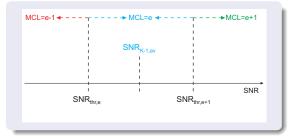

ullet Discarding all samples outside the space SN_{h,k,av} \pm Q%

$$SNR_{h,k,j} \in [SNR_{h,k,av} - Q\%, SNR_{h,k,av} + Q\%]$$

Problem Formulation Average System Behaviour Per Connection Behaviour CAC Implementation

Filtering Routine of the SNR samples

- Monitoring of every connection $h \in \mathbf{H}$ at consecutive timeframes T_{frm} : $1_h, \ldots, k_h, \ldots, K_h$
- SNR sampling with period $T_{smp} < T_{frm}$
- $N_{smp} = T_{frm}/T_{smp}$ sample per timeframe
- Calculation of the mean SNR for every timeframe k_h:

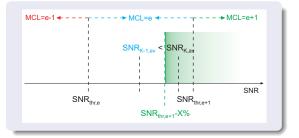

$$SNR_{h,k,av} = \frac{1}{J_h + 1} \cdot \left\{ SNR_{h,k-1,av} + \sum_{j=1}^{J_h} SNR_{h,k,j} \right\}$$

• Discarding all samples outside the space $SN_{h,k,av}\pm Q\%$

$$SNR_{h,k,j} \in [SNR_{h,k,av} - Q\%, SNR_{h,k,av} + Q\%]$$

Problem Formulation Average System Behaviour Per Connection Behaviour CAC Implementation

Prediction of Upcoming States

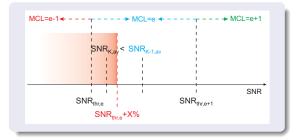


$$\begin{cases} SNR_{h,K,av} > SNR_{h,K-1,av} \\ SNR_{h,K,av} > SNR_{thr,(e_h+1)} - X\% \end{cases} \Rightarrow MCL_{h,pr} = e_h + 1$$

$$\begin{cases} SNR_{h,K,av} < SNR_{h,K-1,av} \\ SNR_{h,K,av} < SNR_{thr,e_h} + X\% \end{cases} \Rightarrow MCL_{h,pr} = e_h - 1$$

Problem Formulation Average System Behaviour Per Connection Behaviour CAC Implementation

Prediction of Upcoming States

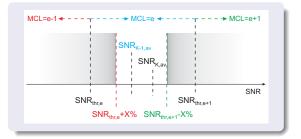


$$\begin{cases} SNR_{h,K,av} > SNR_{h,K-1,av} \\ SNR_{h,K,av} > SNR_{thr,(e_h+1)} - X\% \end{cases} \Rightarrow MCL_{h,pr} = e_h + 1$$

$$\left(\begin{array}{c} SNR_{h,K,av} < SNR_{h,K-1,av} \\ SNR_{h,K,av} < SNR_{thr,e_h} + X\% \end{array} \right\} \Rightarrow MCL_{h,pr} = \Theta_h - 1$$

Problem Formulation Average System Behaviour Per Connection Behaviour CAC Implementation

Prediction of Upcoming States



$$\left\{ \begin{array}{l} SNR_{h,K,av} > SNR_{h,K-1,av} \\ SNR_{h,K,av} > SNR_{hr,(e_h+1)} - X\% \end{array} \right\} \Rightarrow MCL_{h,pr} = \Theta_h + 1$$

$$\left\{ \begin{array}{l} SNR_{h,K,av} < SNR_{h,K-1,av} \\ SNR_{h,K,av} < SNR_{thr,e_h} + X\% \end{array} \right\} \Rightarrow MCL_{h,pr} = e_h - 1$$

Problem Formulation Average System Behaviour Per Connection Behaviour CAC Implementation

Prediction of Upcoming States

$$\begin{cases} SNR_{h,K,av} > SNR_{h,K-1,av} \\ SNR_{h,K,av} > SNR_{thr,(e_h+1)} - X\% \end{cases} \Rightarrow MCL_{h,pr} = e_h + 1$$

$$\begin{cases} SNR_{h,K,av} < SNR_{h,K-1,av} \\ SNR_{h,K,av} < SNR_{thr,e_h} + X\% \end{cases} \Rightarrow MCL_{h,pr} = e_h - 1$$

Problem Formulation Average System Behaviour Per Connection Behaviour CAC Implementation

The CAC algorithm

- New connection arrival c with requested datarate DRc
 - Proposed CAC according to the Average System Behaviour

$$CAC_{A}$$

 $SR_{H,av} + rac{DR_{c}}{B(MCL_{c})} \leq SR_{max}$

• Proposed CAC according to the Per Connection Behaviour

$$CAC_{B}$$
 $SR_{H,Pr} + rac{DR_{c}}{B(MCL_{c})} \leq SR_{max}$

Proposed Hybrid CAC

$$CAC_{HY}$$
$$min\{SR_{H,av}, SR_{H,pr}\} + \frac{DR_c}{B(MCL_c)} \leq SR_{max}$$

Problem Formulation Average System Behaviour Per Connection Behaviour CAC Implementation

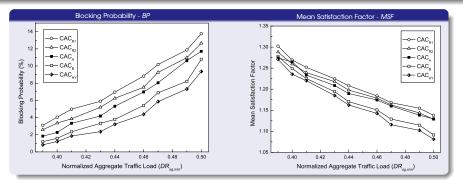
Evaluation Criteria

- Evaluation Criteria
 - Blocking Probability BP

$$BP = \frac{\text{number of rejected connections}}{\text{total number of arrivals}}$$

• Mean Satisfaction Factor - MSF

$$SF_h = E\left[\frac{DR_h(t)}{MRIR_g}
ight], \forall t \in T_{tot,h}$$
 $MSF = \frac{1}{H} \cdot \sum_{h=1}^{H} SF_h$


Optimum Performance CAC

$$\mathsf{BP} \longrightarrow \mathsf{O} \cap \mathsf{MSF} \geq 1$$

- CAC algorithms of reference
 - CAC_{R1}: Admission/Rejection based on the instantaneous MCL
 - CAC_{R2}: Admission/Rejection based on the last N SNR samples

Problem Formulation Average System Behaviour Per Connection Behaviour CAC Implementation

Evaluation Comparative Study - Simulation Results

- BP decrease up to 50%
 - Corresponding increase of the spectrum utilization
- MSF remains over the limit of 100%
 - Guarantee of the requested QoS

Problem Formulation Proposed RRM Algorithm - *RRM_{UL}* Theoretical Analysis Quantitative Evaluation

Bandwidth Allocation under Transmission Power Limitations

• SNR: Reversely proportional to the number of occupied subcarriers C

$$(SNR)_{dB} = \left(\frac{S_{Ix,max}}{C}\right)_{dBm} - (A_{ag})_{dB} - (N_0)_{dBm} \implies \frac{dSNR}{dC} < 0$$

Data bits per symbol B(MCL): Descending function of C

$$\frac{\mathrm{d}B(MCL(C))}{\mathrm{d}C} \leq 0$$

 Additional subcarrier allocation does not necessarily causes proportional datarate DR increase

$$DR(C) = rac{C \cdot L_{tot} \cdot B(MCL(C))}{T_{frm}}$$

- Non-linear relationship between SR (spectrum consumption) and DR (QoS)
- Optimum *C* definition:

$$SR \downarrow \cap DR \longrightarrow DR_{req}$$

Problem Formulation Proposed RRM Algorithm - *RRM_{UL}* Theoretical Analysis Quantitative Evaluation

Bandwidth Allocation under Transmission Power Limitations

• SNR: Reversely proportional to the number of occupied subcarriers C

$$(SNR)_{dB} = \left(\frac{S_{Ix,max}}{C}\right)_{dBm} - (A_{ag})_{dB} - (N_0)_{dBm} \implies \frac{dSNR}{dC} < 0$$

Data bits per symbol B(MCL): Descending function of C

$$\frac{\mathrm{d}B(\mathit{MCL}(C))}{\mathrm{d}C} \leq 0$$

 Additional subcarrier allocation does not necessarily causes proportional datarate DR increase

$$DR(C) = \frac{C \cdot L_{tot} \cdot B(MCL(C))}{T_{frm}}$$

- Non-linear relationship between SR (spectrum consumption) and DR (QoS)
- Optimum *C* definition:

$$SR \downarrow \cap DR \longrightarrow DR_{req}$$

Problem Formulation Proposed RRM Algorithm - *RRM_{UL}* Theoretical Analysis Quantitative Evaluation

Bandwidth Allocation under Transmission Power Limitations

• SNR: Reversely proportional to the number of occupied subcarriers C

$$(SNR)_{dB} = \left(\frac{S_{Ix,max}}{C}\right)_{dBm} - (A_{ag})_{dB} - (N_0)_{dBm} \implies \frac{dSNR}{dC} < 0$$

Data bits per symbol B(MCL): Descending function of C

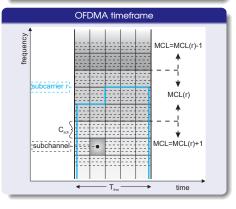
$$\frac{\mathrm{d}B(\mathit{MCL}(C))}{\mathrm{d}C} \leq 0$$

 Additional subcarrier allocation does not necessarily causes proportional datarate DR increase

$$DR(C) = \frac{C \cdot L_{tot} \cdot B(MCL(C))}{T_{frm}}$$

- Non-linear relationship between SR (spectrum consumption) and DR (QoS)
- Optimum C definition:

$$SR \downarrow \cap DR \longrightarrow DR_{req}$$


Problem Formulation **Proposed RRM Algorithm -** *RRM_{UL}* Theoretical Analysis Quantitative Evaluation

Proposed RRM Algorithm - RRM_{UL}

Number of subcarriers $DR = DR_{req}$: C = r

• $r = min\{C : DR(C) \ge DR_{req}\}$

•
$$D(r) = DR_{req} \cdot T_{frm} S(r) = \frac{D(r)}{B(MCL(r))}$$

Optimum number of subcarriers for spectrum saving

1^{st} timeframe: C = m

• $m = max\{C : MCL(C) = MCL(r) + 1\}$

•
$$D(m) = m \cdot L_{tot} \cdot B(MCL(m)) < D(r)$$

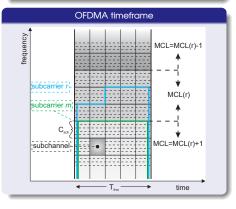
•
$$S(m) = m \cdot L_{tot} < S(r)$$

k next timeframes: C = M

- $M = max\{C : MCL(C) = MCL(r)\}$
- $D(M) = M \cdot L_{tot} \cdot B(MCL(M)) > D(r)$

•
$$S(M) = M \cdot L_{tot} > S(r)$$

• k:
$$GD_{agg}(k+1) = \sum_{\text{frames}}^{k+1} GD = 0$$


Problem Formulation **Proposed RRM Algorithm -** *RRM_{UL}* Theoretical Analysis Quantitative Evaluation

Proposed RRM Algorithm - RRM_{UL}

Number of subcarriers $DR = DR_{req}$: C = r

• $r = min\{C : DR(C) \ge DR_{req}\}$

•
$$D(r) = DR_{req} \cdot T_{frm} S(r) = \frac{D(r)}{B(MCL(r))}$$

Optimum number of subcarriers for spectrum saving

1^{st} timeframe: C = m

• $m = max\{C : MCL(C) = MCL(r) + 1\}$

•
$$D(m) = m \cdot L_{tot} \cdot B(MCL(m)) < D(r)$$

•
$$S(m) = m \cdot L_{tot} < S(r)$$

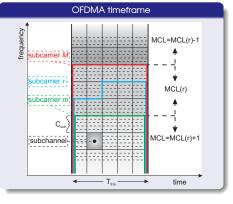
k next timeframes: C = M

• $M = max\{C_{occ} : MC(C_{occ}) = MC(r)\}$

$$D(M) = M \cdot L_{tot} \cdot B(MC(M)) > D(r)$$

•
$$S(M) = M \cdot L_{tot} > S(r)$$

• k:
$$GD_{agg}(k+1) = \sum_{\text{frames}}^{k+1} GD = 0$$


Problem Formulation **Proposed RRM Algorithm -** *RRM_{UL}* Theoretical Analysis Quantitative Evaluation

Proposed RRM Algorithm - RRM_{UL}

Number of subcarriers $DR = DR_{req}$: C = r

• $r = min\{C : DR(C) \ge DR_{req}\}$

•
$$D(r) = DR_{req} \cdot T_{frm} S(r) = \frac{D(r)}{B(MCL(r))}$$

Optimum number of subcarriers for spectrum saving

1^{st} timeframe: C = m

• $m = max\{C : MCL(C) = MCL(r) + 1\}$

•
$$D(m) = m \cdot L_{tot} \cdot B(MCL(m)) < D(r)$$

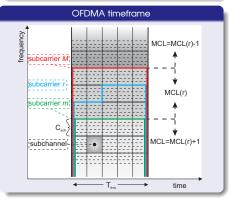
•
$$S(m) = m \cdot L_{tot} < S(r)$$

k next timeframes: C = M

- $M = max\{C : MCL(C) = MCL(r)\}$
- $D(M) = M \cdot L_{tot} \cdot B(MCL(M)) > D(r)$

•
$$S(M) = M \cdot L_{tot} > S(r)$$

• k:
$$GD_{agg}(k+1) = \sum_{\text{frames}}^{k+1} GD = 0$$


Problem Formulation **Proposed RRM Algorithm - RRM_{UL}** Theoretical Analysis Quantitative Evaluation

Proposed RRM Algorithm - RRM_{UL}

Number of subcarriers $DR = DR_{reg}$: C = r

•
$$r = min\{C : DR(C) \ge DR_{req}\}$$

•
$$D(r) = DR_{req} \cdot T_{frm} S(r) = \frac{D(r)}{B(MCL(r))}$$

Optimum number of subcarriers for spectrum saving

- DR degradation at the 1st timeframe
- Full DR compensation during the k next timeframes
- 1st frame: Symbol gain higher than bits losses - Increase in bits/symbol
- k frames: Symbol loss proportional to bits gain - Constant bits/symbol
- Totally for k + 1 frames: Spectrum saving without QoS degradation

Problem Formulation Proposed RRM Algorithm - *RRM_{UL}* **Theoretical Analysis** Quantitative Evaluation

Theoretical Proof of *RRM_{UL}* Efficiency

• Total gain in bits over k + 1 timeframes:

$$GD_{agg}(k+1) = (D(m) - D(r)) + k \cdot (D(M) - D(r))$$

• Total gain in symbols over k + 1 timeframes:

$$GS_{agg}(k+1) = (S(r) - S(m)) + k \cdot (S(r) - S(M))$$

• $GD_{agg}(k+1) = 0$. Hence

$$GS_{agg}(k+1) = m \cdot \left(\frac{B(MCL(m))}{B(MCL(r))} - 1\right) \cdot L_{tot}$$

Spectrum saving whenever the proposed algorithm is executed

 $B(MCL(m)) > B(MCL(r)) \Rightarrow GS_{agg}(k+1) > 0$

Problem Formulation Proposed RRM Algorithm - *RRM_{UL}* **Theoretical Analysis** Quantitative Evaluation

Theoretical Proof of *RRM_{UL}* Efficiency

• Total gain in bits over k + 1 timeframes:

$$GD_{agg}(k+1) = (D(m) - D(r)) + k \cdot (D(M) - D(r))$$

• Total gain in symbols over k + 1 timeframes:

$$GS_{agg}(k+1) = (S(r) - S(m)) + k \cdot (S(r) - S(M))$$

•
$$GD_{agg}(k+1) = 0$$
. Hence

$$GS_{agg}(k+1) = m \cdot \left(\frac{B(MCL(m))}{B(MCL(r))} - 1\right) \cdot L_{tot}$$

• Spectrum saving whenever the proposed algorithm is executed

$$B(MCL(m)) > B(MCL(r)) \Rightarrow GS_{agg}(k+1) > 0$$

Problem Formulation Proposed RRM Algorithm - *RRM_{UL}* **Theoretical Analysis** Quantitative Evaluation

Conditions of Maximum Efficiency for RRM_{UL}

Conditions of definition for m

 $\exists m \Leftrightarrow MCL(r) < MCL(C_{sch})$

Doubling C from C_{sch} to $2 \cdot C_{sch} \Rightarrow$

Decrease of SNR by 3dB $\,\Rightarrow\,$

Degradation by 1 MCL \forall SNR \notin [SNR_{thr,4} - 3, SNR_{thr,4}] \cap [SNR_{thr,7} + 3, ∞]

 $\exists m \Leftrightarrow DR_{req} > DR(C_{sch}) \Leftrightarrow r > C_{sch}$

Maximum datarate for $C = C_{sch}$
(DR _{max,e} in kbps)
58,8
117,6
176,4
235,2
352,8
470,4
529,2

For
$$DR_{req} \in [DR_{max,e}, DR_{max,e+1}]$$

 $\exists m \Leftrightarrow SNR < SNR_{thr,e+1}$

 $P[\exists m] \uparrow \Leftrightarrow SNR \downarrow \cap DR_{req} \uparrow$

Problem Formulation Proposed RRM Algorithm - *RRM_{UL}* **Theoretical Analysis** Quantitative Evaluation

Conditions of Maximum Efficiency for RRM_{UL}

• Conditions of definition for M

$$\exists M \Leftrightarrow DR_{reg} \text{ is satisfied } \Leftrightarrow \exists r$$

 $P[\exists M] \uparrow \Leftrightarrow SNR \uparrow \cap DR_{req} \downarrow$

• Parallel satisfaction of both *m* and *M* conditions

$$P[\exists m \cap \exists M] \uparrow \\ \Leftrightarrow \\ DR_{req} \longrightarrow DR^+_{max,e}, \forall e \in \mathbf{E}$$

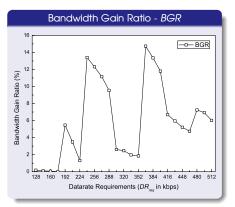
Problem Formulation Proposed RRM Algorithm - *RRM_{UL}* Theoretical Analysis Quantitative Evaluation

Bandwidth Saving

 GS_h(t): Percentage gain in symbols per timeframe using RRM_{UL}

$$\textit{GS}_{h}(t) = rac{\textit{S}_{\textit{bas}}(t) - \textit{S}_{\textit{pro}}(t)}{\textit{S}_{\textit{bas}}(t)}$$

 BGR: Mean bandwidth saving for all connections


$$BGR = \frac{1}{H} \cdot \sum_{h=1}^{G} \left\{ [GS_h(t)] \right\}$$

Desirable behaviour

BGR ↑

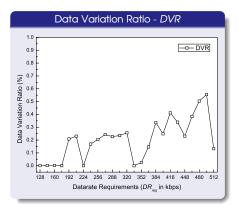
 Iterative saw-like pattern, with peaks at

$$DR_{req} \longrightarrow DR_{max,e}^+$$

Problem Formulation Proposed RRM Algorithm - *RRM_{UL}* Theoretical Analysis Quantitative Evaluation

Quality of Service

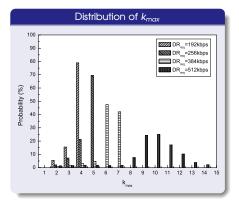
 VD_h(t): Percentage deviation of the number of forwarded bits per timeframe using RRM_{UL}


 $VD_h(t) = rac{D_{ extsf{pro}}(t) - D_{ extsf{req}}(t)}{D_{ extsf{req}}(t)}$

• *DVR*: Mean deviation of the volume of forwarded data for all connections

$$DVR = \frac{1}{H} \cdot \sum_{h=1}^{G} \left\{ [VD_h(t)] \right\}$$

Desirable behaviour


 $DVR \longrightarrow 0$

Problem Formulation Proposed RRM Algorithm - *RRM_{UL}* Theoretical Analysis Quantitative Evaluation

Quality of Service

- Distribution of k_{max}
- k_{max,h}: Maximum value of k for the whole duration of connection h
- At every RRM_{UL} execution, datarate remains degraded for k timeframes
- The duration of k + 1 timeframes should not surpass the maximum delay boundary of the forwarded application
- Evaluation criterion only for real-time connections

Resource Management in Mobile Networks

Georgios Theodoridis Electrical and Computer Engineer, PhD

Centre for Research & Technology - Hellas Informatics & Telematics Institute