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• Event detection and recognition are attracting 

significant research attention in many areas

• Events are characterized by their spatial and 

temporal extent (i.e. where and when they occur)

• Statistical processing of the motion features 
can provide spatial and temporal localization of 

activities

•Further event processing can follow, e.g. 
recognition, classification etc.

Introduction
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•We present a principled approach to detecting 

regions of motion and times of change in 

activities.

•Areas of activity are found by processing the 

kurtosis of illumination variations. This leads to 

binary masks called “Activity Areas”.

•Times of change in activities are found by 

applying sequential likelihood ratio testing.

•Activity areas for subsequences corresponding 
to different activities are extracted.

Introduction
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Spatial activity Localization
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Temporal activity Localization
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• Inter-frame illumination variations are caused 

by measurement noise and/or pixel activity.

• Displacement =
• Measurement noise =

•The measurement noise is assumed to follow a 

Gaussian distribution. This is a common 
assumption in practice and holds for a large 

number of data samples.

Kurtosis-based spatial localization
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• The Kurtosis is a measure of a variable’s 
Gaussianity: it is zero for Gaussian variables.

•In our case, the kurtosis of a series of flow 

measurements will be zero for pixels whose flow is 

caused by (Gaussian) noise.

•In practice, the data is not perfectly Gaussian and 

the kurtosis is not precisely zero.

•However: the kurtosis is sensitive to outliers, so its 

values are much higher when the data contains an 
actual displacement (i.e. an outlier) and not only 

measurement noise.
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Example of kurtosis values with 
Gaussian vs. Exponential noise
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Example of kurtosis values of static 
vs. active pixels
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• Application of the kurtosis to the optical flow 
measurements over several frames leads to 
binary masks, the “Activity areas”.

• Activity areas have been proven to be more 
robust to noise than “Motion Energy Images”, 
defined as:

binarized interframe differences

Motion Energy Images
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MEIs, Activity Areas

Activity 

area

MEI
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MEIs, Activity Areas for noisy data

Activity 

area
MEI
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MEIs, Activity Areas for noisy data
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MEIs, Activity Areas for noisy data

Activity 

area
MEI

Data with

additive

noise

Video frame
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Activity Areas obtained sequentially 
over several frames
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Activity Areas obtained sequentially 
over several frames
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Sequential Change Detection for 
temporal event localization

• Changes in the activity/event taking place are 
often reflected in changes in the motion present in 
a scene.

• The motion (optical flow field) follows a different 
statistical distribution before and after a change.

• If a change takes place at an unknown time 
instant L, for N data samples, we have:
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Sequential Change Detection for 
temporal event localization

• Sequential change detection techniques need to 
be employed to find:
• Unknown moment of change k, for unknown
distributions         and         before and after a 
change, respectively.
• Sequential change detection advantages:
• Data is processed as it arrives, can provide online, 
real-time solutions
• Change points are proven to be detected with a 
minimum delay.

• In practice, the data distributions are 
approximated from the available data.
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Cumulative Sum (CUSUM) for 
Sequential Change Detection

• The CUSUM method is one of the most commonly 
used sequential change detection techniques in 
practice.
• For a data vector     the log-likelihood ratio of the 
data at each frame k is estimated:

• The test statistic examined at each frame is:
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Cumulative Sum (CUSUM) for 
Sequential Change Detection

• Changes are found when the test statistic 
becomes higher than a predefined threshold         .
•
• The threshold is estimated empirically with 
training data in order to give the smallest detection 
delay, and its optimum value is found to be:

• are the mean and standard deviation of the 
test statistic values until frame k.
• Best values for c in [2,3] for human activity 
videos.
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Data modeling
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Data modeling
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CUSUM test for Cauchy data

• For a N sample vector, the CUSUM test becomes:

• When compared to a threshold chosen based on 
training data, we obtain correct change detection.
• Separates the video into subequences of different 
activities.
• Activities in the subsequences can be correctly 
classified once the frame of change is found.
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Activity subsequence separation
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Activity subsequence separation
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Activity subsequence recognition
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Sequential change detection for 
varying scene illumination

• Data is processed sequentially in time.
• This allows to check for global scene illumination 
changes.

• Illumination induced changes can be eliminated –
the method is robust to global illumination 
variations.

• False alarm detections are eliminated based on 
motion information.
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False alarm elimination

• Ratio of average illumination      at frame k:

• For          there is a global illumination change.
Motion false alarms

• Ratio of average motion magnitudes at frame k:

• For        , or when the sign of the average motion 
changes, the detected change is a false alarm.

Global illumination changesGlobal illumination changes
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Experiments

• Changes detected at frames 18, 32:
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Experiments

• Changes detected at frames 14, 46, 88:
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Experiments

• Changes detected at frames 16, 61, 84:
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Experiments with varying illumination

• Person enters, exits:

•Person appears from behind plant, leaves:
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Experiments with varying illumination

• Person enters, walks behind plant:

•No change is detected at illumination changes:
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Experiments with varying illumination

• Hoop with varying illumination, changes found at 
correct change points, not when illumination 
changes.
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Experiments with varying illumination

• Kid throws plane under varying illumination
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Experiments with varying illumination

• Changes at frame 17 when plane is thrown, 41 
when it changes trajectory, 90 when it lands. Change 
is not detected at 60 when illum. changes.
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Change detection in temporal 
textures videos

• Temporal textures videos contain highly non-rigid 
motions, e.g. water flowing, tree leaves fluttering, 
crowds of people walking, traffic.
• Difficult to analyze their motion using traditional 
motion estimation techniques, e.g. optical flow.
• Work on temporal textures has focused mostly on 
their modeling. The SpatioTemporal AutoRegressive 
model (STAR) has received much attention for the 
representation of temporal textures.
• This work presents a non-parametric approach to 
modeling the motion in temporal textures, rather 
than their appearance.



38
Informatics and Telematics Institute 38

Change detection in temporal 
textures videos

• The modeling of motion in temporal textures allows 
the detection of changes between different temporal 
texture subsequences based on motion rather than 
appearance features.
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Mathematical model for temporal 
texture sequences

• Consider that each frame consists of M moving 
“objects” (leaves, cars in traffic, people in a crowd) 
that are undergo a random displacement of    from 
frame to frame:

• The FT of the frame illumination values is:
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Mathematical model for temporal 
texture sequences

• The displacements are considered to follow the 
same random distribution:

• The characteristic function of a random distribution 
is defined as its FT:
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Mathematical model for temporal 
texture sequences

• The expected value of the FT of frame k is:

• The motion characteristic function can be found 
from the video FT
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Mathematical model for temporal 
texture sequences

• The characteristic function         provides a 
complete description of the random motion's 
statistics:
•All moments (mean, variance, HOS) and the data 
pdf can be derived from the characteristic function.

• The motion distribution can be derived from its 
characteristic function.
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Mathematical model for temporal 
texture sequences

• Sequential change detection can be applied to find 
changes between one motion distribution and 
another, i.e. between two successive temporal 
textures.
• In practice, we need to approximate the expected 
value of the frame FTs.
• Theoretically we need many instantiations of the 
video, but in practice this is not possible.
• Assumptions:
• Ergodic data
• Motion distribution does not change significantly in 
a window of      frames.
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Mathematical model for temporal 
texture sequences

• Approximation of expected values of Fts:

• So the characteristic function is given by:

•and the motion distributions are extracted from it
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Sequential change detection for 
temporal texture sequences

• Initial (“baseline”) data distribution      is 
approximated from the first      frames.
• Current data distribution     is approximated from        
frames neighboring the current frame k.
• The test statistic is the log-likelihood ratio:

• and the CUSUM test is, as before:

•and the motion distributions are extracted from it

{f_1(x_n)}



46
Informatics and Telematics Institute 46

Experimental Results



47
Informatics and Telematics Institute 47

Experimental Results
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Experimental Results



49
Informatics and Telematics Institute 49

Experimental Results
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Experimental Results
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Experimental Results
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Experimental Results
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Conclusions

• Sequential change detection can be used for the 
detection of changes in a variety of applications.
• Allows the processing of data online, as it arrives.
• This can lead to robustness to illumination changes 
due to its temporally local nature.
• Issues remain with the online estimation of data 
pdfs and the testing threshold.
•However these issues concern the area of sequential 
change detection in general.
•Alternative methods such as Sequential Probability 
Ratio Testing (SPRT) or non-sequential techniques 
can be used, but they still require prior knowledge of 
data distributions
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Brownies
BROWNIES

• 140 gr butter
• 280 grams sugar
• 82 grams unsweetened cocoa powder
• 1/4 teaspoon salt
• 1/2 teaspoon pure vanilla extract
• 2 large eggs, cold
• 66 grams flour

• Melt butter in a saucepan. Remove from heat when melted. Add
• Add cocoa, mix well. Add sugar, mix well. Add eggs, mix. Add flour, salt, mix.
• Add additional ingredients (cherries, chocolate chips, nuts).
• Pour in pan.
• Add cream cheese topping (see below). Bake at 180 C for 25-30 min.
• Cut into squares when cooled. EAT.

•CREAM CHEESE TOPPING
• 200g cream cheese, at room temperature
• 1 large egg yolk
• 5 tablespoons (75g) sugar
• 1/8 teaspoon vanilla extract

• Beat all ingredients until smooth. Put spoonfuls over brownie batter and swirl with a sharp knife. Bake at 
180C for 25-30 min.
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Blondies
BLONDIES

• 8 tablespoons butter, melted
•1 cup brown sugar ( = 1 cup white sugar + 1 tbsp molasses in the blender)
•1 egg
•1 teaspoon vanilla
•Pinch salt
•1 cup flour

• Mix melted butter with brown sugar – beat until smooth. Beat in egg and then vanilla.
• Add salt, stir in flour. Mix in any additions (nuts, chocolate chips, whisky (!) etc).
• Pour into prepared pan. Bake at 180°C 20-25 minutes, or until set in the middle.

• Cut into squares when cooled. EAT.

•

Blondies
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Thank you for your attention!

Any questions?


