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Kernel Methods: an overview

Kernel methods: one of the most active areas in ML

Key idea of kernel methods:

Embed data in input space into high dimensional feature space
Apply linear methods in feature space

Input space can be: vector, string, graph, etc.

Embedding is implicit via a kernel function k(·, ·), which
defines dot product in feature space

Any algorithm that can be written with only dot products is
“kernelisable”
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What is PCA

Principal component analysis (PCA): an orthogonal basis
transformation

Transform correlated variables into uncorrelated ones
(principal components)

Can be used for dimensionality reduction

Retains as much variance as possible when reducing
dimensionality
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How PCA works

Given m centred vectors: X̃ = (x̃1, x̃2, · · · , x̃m)

X : d̃ ×m data matrix,

Eigen decomposition of covariance C̃ = X̃ X̃T : C̃ Ṽ = Ṽ Ω̃

Diagonal matrix Ω̃: eigenvalues
Ṽ = (ṽ1, ṽ2, · · · ): eigenvectors, orthogonal basis sought

Data can now be projected onto orthogonal basis

Projecting only onto leading eigenvectors ⇒ dimensionality
reduction with minimum variance loss
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Kernelising PCA

If we knew explicitly the mapping from input space
to feature space xi = φ(x̃i ):

we could map all data: X = φ(X̃ ), where X is d ×m

diagonalise the covariance in feature space C = XXT :
XTCV = XTVΩ: or KA = A∆ where K = XTX and
A = XTV

Diagonal matrix ∆: eigenvalues
V = (v1, v2, · · · ): orthogonal basis in feature space

However... we have φ(·) only implicitly via:
< φ(x̃i ), φ(x̃j) >= k(x̃i , x̃j)

Kernelised PCA
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Kernelising PCA

Kernel matrix K : evaluation of kernel function on all pairs
of samples; symmetric, positive semi-definite (PSD)

Connection between C and K :

C = XXT and K = XTX
C is d × d and K is m ×m

C is not explicitly available but K is

So we diagonalise K instead of C : K = A∆AT

A = (α1,α2, · · · ): eigenvectors
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Kernelising PCA

Using the connection between C and K , we have:

C and K have the same eigenvalues
Their i th eigenvectors are related by: vi = Xαi

vi is still not explicitly available: αi is, but X is not

However... we are interested in projection onto the orthogonal
basis, not the basis itself

Projection onto vi : XTvi = XTXαi = Kαi

Both K and αi are available.
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Kernel FDA

Kernel Fisher discriminant analysis: another supervised
learning technique

Seeking the projection w maximising Fisher criterion

max
w

wT m
m+m− SBw

wT (ST + λI )w
(1)

m: numbers of samples
m+ and m−: numbers of positive and negative samples
SB and ST : between class and total scatters
λ: regularisation parameter
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Kernel FDA

It can be proved that (3) is equivalent to

min
w
||(XP)Tw − a||2 + λ||w||2 (2)

P and a: constants determined by labels

(4) is equivalent to its Lagrangian dual:

min
α

1

4
αT (I +

1

λ
K)α−αTa (3)

(5) depends only on K (and labels): FDA can be kernelised
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MKL: motivation

A recap on kernel methods:

Embed (implicitly) into (very high dimensional) feature space
Implicitly: only need dot product in feature space, i.e., the
kernel function k(·, ·)
Apply linear methods in the feature space
Easy balance of capacity (empirical error) and generalisation
(norm wTw)

These sound nice but what kernel function to use?

This choice is critically important, for it completely determines
the embedding
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MKL: motivation

Ideal case: learn kernel function from data

If that is hard, can we learn a good combination of given
kernel matrices: the multiple kernel learning problem

Given n m ×m kernel matrices, K1, · · · ,Kn

Most MKL formulations consider linear combination:

K =
n∑

j=1

βjKj , βj ≥ 0 (4)

Goal of MKL: learn the “optimal” weights β ∈ Rn
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MKL: motivation

Kernel matrix Kj : pairwise dot products in feature space j

Geometrical interpretation of unweighted sum K =
∑n

j=1 Kj :

Cartesian product of the feature spaces

Geometrical interpretation of weighted sum K =
∑n

j=1 βjKj :

Scale feature spaces with
√
βj , then take Cartesian product

Learning kernel weights: seeking the “optimal” scaling
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MKL: motivation

Some example definitions of “optimality”:

Soft margin ⇒ multiple kernel SVM
Fisher criterion ⇒ multiple kernel FDA
Other objectives: kernel alignment, KL divergence, etc.

Next we propose an `p regularised MK-FDA

Learn kernel weights β by maximising Fisher Criterion
Regularise β with a general `p norm for any p ≥ 1
Better performance than single kernel and fixed norm MK-FDA
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`p MK-FDA: min-max formulation

We rewrite the kernel FDA primal problem:

max
w

wT m
m+m− SBw

wT (ST + λI )w
(5)

And its Lagrangian dual:

min
α

1

4
αT (I +

1

λ
K)α−αTa (6)

For multikernel FDA, K can be chosen from a kernel set K:

max
K∈K

min
α

1

4
αT (I +

1

λ
K)α−αTa (7)
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`p MK-FDA: min-max formulation

Consider linear combination: K = {K =
∑n

i=1 βiKi : β ≥ 0}

β must be regularised in order for (9) to be meaningful

We propose a general `p regularisation for any p ≥ 1:
K = {K =

∑n
i=1 βiKi : β ≥ 0, ||β||p ≤ 1}

Substituting into (9), the `p MK-FDA problem becomes:

max
β

min
α

1
4λ
αT ∑n

i=1 βiKiα + 1
4
αTα−αTa (8)

s.t. β ≥ 0, ||β||p ≤ 1
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`p MK-FDA: SIP formulation

Semi-infinite program (SIP):

Finite number of variables, infinite many constraints
Efficient algorithms exist for solving SIP

Min-max formulation (10) can be reformulated as a SIP:

maxθ,β θ (9)

s.t. β ≥ 0, ||β||p ≤ 1, S(α,β) ≥ θ ∀α ∈ Rm

where

S(α,β) =
1

4λ
αT

n∑
i=1

βiKiα +
1

4
αTα−αTa (10)
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`p MK-FDA: solving the SIP with column generation

Column generation:

Divide SIP into inner and outer subproblems
Alternate between the two subproblems till convergence

Inner subproblem:

unconstrained quadratic program

Outer subproblem:

quadratically constrained linear program

Very efficient, and convergence is guaranteed
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Effect of regularisation norm: simulation

Figure: Distributions of two classes: 3 examples.

Sample from two heavily overlapping Gaussian distributions

Error rate of single kernel FDA with RBF kernel: ∼0.43

Generate n kernels, apply `1 and `2 MK-FDAs, i.e. set p = 1
and p = 2 in `p MK-FDA
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Effect of regularisation norm: simulation

Figure: Error rate of `1 MK-FDA and `2 MK-FDA

Both outperform single kernel, more kernels ⇒ lower error:

More kernels means more dimensions, better separability

More kernels ⇒ more advantageous `2 is over `1. Why?
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Effect of regularisation norm: simulation

Figure: Leant kernel weights. Left: n = 5. Right: n = 30.

Reason: when n is large, `1 regularisation gives sparse
solution, resulting in loss of information
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Effect of regularisation norm: Pascal VOC 2008

Pascal VOC 2008 development set:

20 object classes ⇒ 20 binary problems
Mean average precision (MAP) as performance metric

30 “informative” kernels:

Colour SIFTs as local descriptors
Bag-of-words model for kernel construction

Mix informative kernels with 30 random kernels

31 runs in total
1st run: 0 informative + 30 random
31st run: 30 informative + 0 random
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Effect of regularisation norm: Pascal VOC 2008

Figure: Learnt kernel weights with various kernel mixture.

Again, `1 gives sparse solution and `2 non-sparse

A hypothesis: when most kernels are informative sparsity is a
bad thing and vice versa
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Effect of regularisation norm: Pascal VOC 2008

Figure: MAP vs. number of informative kernels

Multiple Kernel Learning and Feature Space Denoising



Overview
Kernel Methods

Multiple Kernel Learning
MKL and Feature Space Denoising

Conclusions

MKL: motivation
`p regularised multiple kernel FDA
Effect of regularisation norm

Effect of regularisation norm: Pascal VOC 2007

We have seen the behaviour of `1 and `2 MK-FDAs

A principle for selecting regularisation norm:

High intrinsic sparsity in base kernels: use small norm
Low intrinsic sparsity: use large norm

But how do we know the intrinsic sparsity?

Simple idea: try various norms, choose the best on validation

`p MK-FDA allows us to do this
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Effect of regularisation norm: Pascal VOC 2007

Figure: Learnt kernel weights on validation set with various p value.
p = {1, 1 + 2−6, 1 + 2−5, 1 + 2−4, 1 + 2−3, 1 + 2−2, 1 + 2−1, 2, 3, 4, 8, 106}, and
increases from left to right, top to bottom.
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Effect of regularisation norm: Pascal VOC 2007

Figure: APs on validation set and test set with various p value. Left
column: “dinningtable” class. Right column: “cat” class.
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Effect of regularisation norm: Pascal VOC 2007

As expected, the smaller the p, the more sparse the learnt
weights

p = 106 is practically `∞, i.e. uniform weighting

Performance on validation and test sets matches well

A good p value on validation set is also good on test set
This means the optimal p, or the intrinsic sparsity, can be
learnt
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Effect of regularisation norm: Pascal VOC 2007

Table: Comparing `p MK-FDA and fixed norm MK-FDAs

`1 MK-FDA `2 MK-FDA `∞ MK-FDA `p MK-FDA

MAP 54.85 54.79 54.64 55.61

By learning optimal p (intrinsic sparsity) for each class, `p
MK-FDA outperforms fixed norm MK-FDA

∼ 1% improvement is significant: leading methods in VOC
challenges differ only by a few tenths of a percent
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MKL and Denoising: Experimental setup

PASCAL VOC07 dataset, same 33 kernels as before

Use kernel PCA for dimensionality reduction (denoising) in
feature space

Questions to be answered:

Can denoising improve single kernel performance?
Can denoising improve MKL performance?
How MKL behaviour differs on original kernels and denoised
kernels?
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MKL and Denoising: Single kernel performance

Figure: AP vs. variance kept in kernel PCA. Two kernels as examples.

Choosing denoising level using a validation set ⇒ better single
kernel performance (compared to original kernel)
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MKL and Denoising: MKL performance

Table: Comparing `p MK-FDA and fixed norm MK-FDAs

`1 MK-FDA `2 MK-FDA `∞ MK-FDA `p MK-FDA

original kernels 54.85 54.79 54.64 55.61

denoised kernels 54.26 56.06 55.82 56.17

In general, denoised kernels are better than original ones

`p is better than fixed norm, on both original and denoised

Advantage of `p is much smaller with denoised kernels. Why?
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MKL and Denoising: Learnt kernel weight vs. noise level

Figure: Spearman’s coefficient between learnt kernel weights and variance kept
in denoising. All 20 problems in PASCAL VOC07.

Spearman’s coefficient: measure ranking correlation
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MKL and Denoising: Learnt kernel weight vs. noise level

Positive coefficients on most problems (16 out of 20):

The more noisy a kernel, the lower weight it gets
MKL essentially works by removing noise?
Maybe this is why `p not as advantageous on denoised kernels?
Maybe MKL should be done on per dimension basis instead of
per kernel basis?
Linear combination assigns same weight to all dimensions in a
feature space: it cannot remove noise completely
Maybe only nonlinear MKL can be optimal?
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Conclusions

A brief introduction to kernel methods

The kernel trick
Three examples: kernel PCA, SVM, and kernel FDA
Connection between SVM and kernel FDA

Proposed an MKL method: `p regularised MK-FDA

Regularisation norm plays an important role in MKL
`p MK-FDA allows to learn intrinsic sparsity of base kernels ⇒
better performance than fixed norm MKL
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Conclusions

Investigated connection between MKL and feature space
denoising

Denoising improves both single kernel and MKL performance
Positive correlation between weights and variance kept: the
more noisy a kernel is, the lower its learnt weight
Linear kernel combination cannot take care of feature space
denoising automatically
MKL should be done on per dimension basis instead of per
kernel basis?
The optimal (non-linear) MKL is yet to be developed
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