Multiple Kernel Learning and Feature Space Denoising

Fei Yan, Josef Kittler and Krystian Mikolajczyk

Multiple Kernel Learning and Feature Space Denoising

Overview

Kernel Methods Multiple Kernel Learning MKL and Feature Space Denoising Conclusions

Overview

Overview of the talk

- Kernel methods
 - Kernel methods: an overview
 - Three examples: kernel PCA, SVM, and kernel FDA
 - Connection between SVM and kernel FDA
- Multiple kernel learning
 - MKL: motivation
 - ℓ_p regularised multiple kernel FDA
 - The effect of regularisation norm in MKL
- MKL and feature space denoising
- Conclusions

Kernel Methods: an overview Kernel PCA Support Vector Machine Kernel FDA

Kernel Methods: an overview

- Kernel methods: one of the most active areas in ML
- Key idea of kernel methods:
 - Embed data in input space into high dimensional feature space
 - Apply linear methods in feature space
- Input space can be: vector, string, graph, etc.
- Embedding is implicit via a kernel function k(·, ·), which defines dot product in feature space
- Any algorithm that can be written with only dot products is "kernelisable"

・ロト ・同ト ・ヨト ・ヨト

Kernel Methods: an overview Kernel PCA Support Vector Machine Kernel FDA

What is PCA

- Principal component analysis (PCA): an orthogonal basis transformation
- Transform correlated variables into uncorrelated ones (principal components)
- Can be used for dimensionality reduction
- Retains as much variance as possible when reducing dimensionality

(日) (同) (三) (三)

Kernel Methods: an overview Kernel PCA Support Vector Machine Kernel FDA

How PCA works

• Given *m* centred vectors: $\tilde{X} = (\tilde{\mathbf{x}}_1, \tilde{\mathbf{x}}_2, \cdots, \tilde{\mathbf{x}}_m)$

• X: $\tilde{d} \times m$ data matrix,

- Eigen decomposition of covariance $\tilde{C} = \tilde{X}\tilde{X}^{T}$: $\tilde{C}\tilde{V} = \tilde{V}\tilde{\Omega}$
 - Diagonal matrix Ω
 i eigenvalues
 - $\tilde{V} = (\tilde{\mathbf{v}}_1, \tilde{\mathbf{v}}_2, \cdots)$: eigenvectors, orthogonal basis sought
- Data can now be projected onto orthogonal basis
- Projecting only onto leading eigenvectors ⇒ dimensionality reduction with minimum variance loss

・ロッ ・雪 ・ ・ ヨ ・ ・

Kernel Methods: an overview Kernel PCA Support Vector Machine Kernel FDA

Kernelising PCA

- If we knew explicitly the mapping from input space to feature space x_i = φ(x̃_i):
- we could map all data: $X = \phi(ilde{X})$, where X is d imes m
- diagonalise the covariance in feature space $C = XX^T$: $X^T CV = X^T V \Omega$: or $KA = A\Delta$ where $K = X^T X$ and $A = X^T V$
 - Diagonal matrix Δ: eigenvalues
 - $V = (\mathbf{v}_1, \mathbf{v}_2, \cdots)$: orthogonal basis in feature space
- However... we have $\phi(\cdot)$ only implicitly via: $< \phi(\tilde{\mathbf{x}}_i), \phi(\tilde{\mathbf{x}}_j) >= k(\tilde{\mathbf{x}}_i, \tilde{\mathbf{x}}_j)$
- Kernelised PCA

・ロト ・同ト ・ヨト ・ヨト

Kernel Methods: an overview Kernel PCA Support Vector Machine Kernel FDA

Kernelising PCA

- Kernel matrix K: evaluation of kernel function on all pairs of samples; symmetric, positive semi-definite (PSD)
- Connection between C and K:
 - $C = XX^T$ and $K = X^TX$
 - C is $d \times d$ and K is $m \times m$
- C is not explicitly available but K is
- So we diagonalise K instead of C: $K = A \Delta A^T$
 - $A = (\alpha_1, \alpha_2, \cdots)$: eigenvectors

(4月) イヨト イヨト

Kernel Methods: an overview Kernel PCA Support Vector Machine Kernel FDA

Kernelising PCA

- Using the connection between C and K, we have:
 - C and K have the same eigenvalues
 - Their i^{th} eigenvectors are related by: $\mathbf{v}_i = X \boldsymbol{lpha}_i$
- \mathbf{v}_i is still not explicitly available: α_i is, but X is not
- However... we are interested in projection onto the orthogonal basis, not the basis itself
- Projection onto \mathbf{v}_i : $X^T \mathbf{v}_i = X^T X \alpha_i = K \alpha_i$
- Both K and α_i are available.

イロト イポト イラト イラト

Kernel Methods: an overview Kernel PCA Support Vector Machine Kernel FDA

Kernel FDA

- Kernel Fisher discriminant analysis: another supervised learning technique
- Seeking the projection **w** maximising Fisher criterion

$$\max_{\mathbf{w}} \frac{\mathbf{w}^{T} \frac{m}{m^{+}m^{-}} S_{B} \mathbf{w}}{\mathbf{w}^{T} (S_{T} + \lambda I) \mathbf{w}}$$
(1)

- m: numbers of samples
- m^+ and m^- : numbers of positive and negative samples
- S_B and S_T : between class and total scatters
- λ : regularisation parameter

・ロト ・同ト ・ヨト ・ヨト

Kernel Methods: an overview Kernel PCA Support Vector Machine Kernel FDA

Kernel FDA

• It can be proved that (3) is equivalent to

$$\min_{\mathbf{w}} ||(XP)^{T} \mathbf{w} - \mathbf{a}||^{2} + \lambda ||\mathbf{w}||^{2}$$
(2)

- P and a: constants determined by labels
- (4) is equivalent to its Lagrangian dual:

$$\min_{\alpha} \frac{1}{4} \alpha^{T} (I + \frac{1}{\lambda} K) \alpha - \alpha^{T} \mathbf{a}$$
(3)

• (5) depends only on K (and labels): FDA can be kernelised

(日) (同) (三) (三)

MKL: motivation ℓ_p regularised multiple kernel FDA Effect of regularisation norm

MKL: motivation

- A recap on kernel methods:
 - Embed (implicitly) into (very high dimensional) feature space
 - Implicitly: only need dot product in feature space, i.e., the kernel function k(·, ·)
 - Apply linear methods in the feature space
 - Easy balance of capacity (empirical error) and generalisation (norm w^Tw)
- These sound nice but what kernel function to use?
 - This choice is critically important, for it completely determines the embedding

イロト イポト イヨト イヨト

MKL: motivation ℓ_p regularised multiple kernel FDA Effect of regularisation norm

MKL: motivation

- Ideal case: learn kernel function from data
- If that is hard, can we learn a good combination of given kernel matrices: the multiple kernel learning problem
- Given $n \ m \times m$ kernel matrices, K_1, \cdots, K_n
- Most MKL formulations consider linear combination:

$$K = \sum_{j=1}^{n} \beta_j K_j, \quad \beta_j \ge 0 \tag{4}$$

• Goal of MKL: learn the "optimal" weights $oldsymbol{eta} \in \mathbb{R}^n$

(日) (同) (三) (三)

MKL: motivation ℓ_p regularised multiple kernel FDA Effect of regularisation norm

MKL: motivation

- Kernel matrix K_j : pairwise dot products in feature space j
- Geometrical interpretation of unweighted sum $K = \sum_{i=1}^{n} K_i$:
 - Cartesian product of the feature spaces
- Geometrical interpretation of weighted sum $K = \sum_{i=1}^{n} \beta_i K_i$:
 - Scale feature spaces with $\sqrt{\beta_j}$, then take Cartesian product
- Learning kernel weights: seeking the "optimal" scaling

・ロト ・同ト ・ヨト ・ヨト

MKL: motivation ℓ_p regularised multiple kernel FDA Effect of regularisation norm

MKL: motivation

- Some example definitions of "optimality":
 - Soft margin \Rightarrow multiple kernel SVM
 - Fisher criterion \Rightarrow multiple kernel FDA
 - Other objectives: kernel alignment, KL divergence, etc.
- Next we propose an ℓ_p regularised MK-FDA
 - Learn kernel weights β by maximising Fisher Criterion
 - Regularise eta with a general ℓ_p norm for any $p\geq 1$
 - Better performance than single kernel and fixed norm MK-FDA

MKL: motivation ℓ_p regularised multiple kernel FDA Effect of regularisation norm

ℓ_p MK-FDA: min-max formulation

• We rewrite the kernel FDA primal problem:

$$\max_{\mathbf{w}} \frac{\mathbf{w}^{T} \frac{m}{m^{+}m^{-}} S_{B} \mathbf{w}}{\mathbf{w}^{T} (S_{T} + \lambda I) \mathbf{w}}$$
(5)

And its Lagrangian dual:

$$\min_{\alpha} \frac{1}{4} \alpha^{T} (I + \frac{1}{\lambda} K) \alpha - \alpha^{T} \mathbf{a}$$
 (6)

• For multikernel FDA, K can be chosen from a kernel set \mathcal{K} :

$$\max_{K \in \mathcal{K}} \min_{\alpha} \frac{1}{4} \alpha^{T} (I + \frac{1}{\lambda} K) \alpha - \alpha^{T} \mathbf{a}$$
(7)

(日) (同) (三) (三)

MKL: motivation ℓ_p regularised multiple kernel FDA Effect of regularisation norm

ℓ_p MK-FDA: min-max formulation

- Consider linear combination: $\mathcal{K} = \{\mathcal{K} = \sum_{i=1}^{n} \beta_i \mathcal{K}_i : \beta \ge \mathbf{0}\}$
- β must be regularised in order for (9) to be meaningful
- We propose a general ℓ_p regularisation for any $p \ge 1$: $\mathcal{K} = \{ \mathcal{K} = \sum_{i=1}^n \beta_i \mathcal{K}_i : \beta \ge \mathbf{0}, ||\beta||_p \le 1 \}$
- Substituting into (9), the ℓ_p MK-FDA problem becomes:

$$\max_{\boldsymbol{\beta}} \min_{\boldsymbol{\alpha}} \quad \frac{1}{4\lambda} \boldsymbol{\alpha}^{T} \sum_{i=1}^{n} \beta_{i} \boldsymbol{K}_{i} \boldsymbol{\alpha} + \frac{1}{4} \boldsymbol{\alpha}^{T} \boldsymbol{\alpha} - \boldsymbol{\alpha}^{T} \mathbf{a}$$
(8)
s.t.
$$\boldsymbol{\beta} \ge \mathbf{0}, \quad ||\boldsymbol{\beta}||_{\boldsymbol{\rho}} \le 1$$

・ロト ・同ト ・ヨト ・ヨト

MKL: motivation ℓ_p regularised multiple kernel FDA Effect of regularisation norm

ℓ_p MK-FDA: SIP formulation

- Semi-infinite program (SIP):
 - Finite number of variables, infinite many constraints
 - Efficient algorithms exist for solving SIP
- Min-max formulation (10) can be reformulated as a SIP:

$$\max_{\theta,\beta} \quad \theta \tag{9}$$
 s.t. $\beta \ge \mathbf{0}, \quad ||\beta||_{\rho} \le 1, \quad S(\alpha,\beta) \ge \theta \quad \forall \alpha \in \mathbb{R}^{m}$

where

$$S(\boldsymbol{\alpha},\boldsymbol{\beta}) = \frac{1}{4\lambda} \boldsymbol{\alpha}^{\mathsf{T}} \sum_{i=1}^{n} \beta_{i} \boldsymbol{K}_{i} \boldsymbol{\alpha} + \frac{1}{4} \boldsymbol{\alpha}^{\mathsf{T}} \boldsymbol{\alpha} - \boldsymbol{\alpha}^{\mathsf{T}} \mathbf{a}$$
(10)

Multiple Kernel Learning and Feature Space Denoising

MKL: motivation ℓ_p regularised multiple kernel FDA Effect of regularisation norm

 ℓ_p MK-FDA: solving the SIP with column generation

- Column generation:
 - Divide SIP into inner and outer subproblems
 - Alternate between the two subproblems till convergence
- Inner subproblem:
 - unconstrained quadratic program
- Outer subproblem:
 - quadratically constrained linear program
- Very efficient, and convergence is guaranteed

A (10) < A (10) </p>

MKL: motivation ℓ_p regularised multiple kernel FDA Effect of regularisation norm

Effect of regularisation norm: simulation

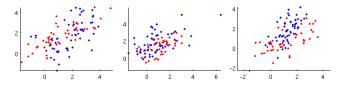


Figure: Distributions of two classes: 3 examples.

- Sample from two heavily overlapping Gaussian distributions
- \bullet Error rate of single kernel FDA with RBF kernel: ${\sim}0.43$
- Generate n kernels, apply l₁ and l₂ MK-FDAs, i.e. set p = 1 and p = 2 in l_p MK-FDA

・ 同・ ・ ヨ・

MKL: motivation ℓ_p regularised multiple kernel FDA Effect of regularisation norm

Effect of regularisation norm: simulation

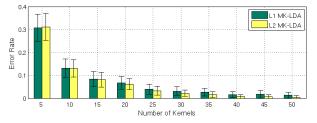


Figure: Error rate of ℓ_1 MK-FDA and ℓ_2 MK-FDA

- Both outperform single kernel, more kernels \Rightarrow lower error:
 - More kernels means more dimensions, better separability
- More kernels \Rightarrow more advantageous ℓ_2 is over ℓ_1 . Why?

MKL: motivation ℓ_p regularised multiple kernel FDA Effect of regularisation norm

Effect of regularisation norm: simulation

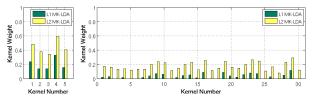


Figure: Leant kernel weights. Left: n = 5. Right: n = 30.

 Reason: when n is large, l₁ regularisation gives sparse solution, resulting in loss of information

MKL: motivation ℓ_p regularised multiple kernel FDA Effect of regularisation norm

Effect of regularisation norm: Pascal VOC 2008

- Pascal VOC 2008 development set:
 - 20 object classes \Rightarrow 20 binary problems
 - Mean average precision (MAP) as performance metric
- 30 "informative" kernels:
 - Colour SIFTs as local descriptors
 - Bag-of-words model for kernel construction
- Mix informative kernels with 30 random kernels
 - 31 runs in total
 - 1st run: 0 informative + 30 random
 - 31st run: 30 informative + 0 random

- 同 ト - ヨ ト - - ヨ ト

MKL: motivation ℓ_p regularised multiple kernel FDA Effect of regularisation norm

Effect of regularisation norm: Pascal VOC 2008

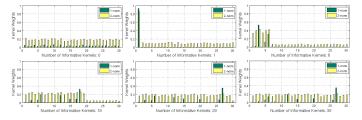


Figure: Learnt kernel weights with various kernel mixture.

- Again, ℓ_1 gives sparse solution and ℓ_2 non-sparse
- A hypothesis: when most kernels are informative sparsity is a bad thing and vice versa

Image: A image: A

MKL: motivation ℓ_p regularised multiple kernel FDA Effect of regularisation norm

Effect of regularisation norm: Pascal VOC 2008

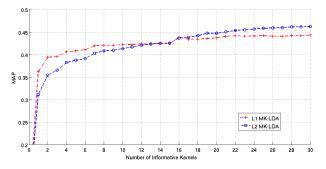


Figure: MAP vs. number of informative kernels

Multiple Kernel Learning and Feature Space Denoising

э

MKL: motivation ℓ_p regularised multiple kernel FDA Effect of regularisation norm

Effect of regularisation norm: Pascal VOC 2007

- \bullet We have seen the behaviour of ℓ_1 and ℓ_2 MK-FDAs
- A principle for selecting regularisation norm:
 - High intrinsic sparsity in base kernels: use small norm
 - Low intrinsic sparsity: use large norm
- But how do we know the intrinsic sparsity?
- Simple idea: try various norms, choose the best on validation
- ℓ_p MK-FDA allows us to do this

イロト イポト イラト イラト

MKL: motivation ℓ_p regularised multiple kernel FDA Effect of regularisation norm

Effect of regularisation norm: Pascal VOC 2007

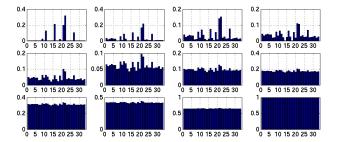


Figure: Learnt kernel weights on validation set with various p value. $p = \{1, 1 + 2^{-6}, 1 + 2^{-5}, 1 + 2^{-4}, 1 + 2^{-3}, 1 + 2^{-2}, 1 + 2^{-1}, 2, 3, 4, 8, 10^{6}\}$, and increases from left to right, top to bottom.

MKL: motivation ℓ_p regularised multiple kernel FDA Effect of regularisation norm

Effect of regularisation norm: Pascal VOC 2007

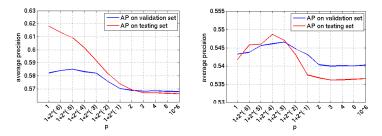


Figure: APs on validation set and test set with various *p* value. Left column: "dinningtable" class. Right column: "cat" class.

MKL: motivation ℓ_p regularised multiple kernel FDA Effect of regularisation norm

Effect of regularisation norm: Pascal VOC 2007

- As expected, the smaller the *p*, the more sparse the learnt weights
- $p=10^6$ is practically ℓ_∞ , i.e. uniform weighting
- Performance on validation and test sets matches well
 - A good *p* value on validation set is also good on test set
 - This means the optimal *p*, or the intrinsic sparsity, can be learnt

イロト イポト イラト イラト

MKL: motivation ℓ_p regularised multiple kernel FDA Effect of regularisation norm

Effect of regularisation norm: Pascal VOC 2007

Table: Comparing ℓ_p MK-FDA and fixed norm MK-FDAs

	ℓ_1 MK-FDA	ℓ_2 MK-FDA	ℓ_∞ MK-FDA	ℓ_p MK-FDA
MAP	54.85	54.79	54.64	55.61

- By learning optimal p (intrinsic sparsity) for each class, ℓ_p MK-FDA outperforms fixed norm MK-FDA
- $\sim 1\%$ improvement is significant: leading methods in VOC challenges differ only by a few tenths of a percent

・ロト ・同ト ・ヨト ・ヨト

MKL and feature space denoising

MKL and Denoising: Experimental setup

- PASCAL VOC07 dataset, same 33 kernels as before
- Use kernel PCA for dimensionality reduction (denoising) in feature space
- Questions to be answered:
 - Can denoising improve single kernel performance?
 - Can denoising improve MKL performance?
 - How MKL behaviour differs on original kernels and denoised kernels?

・ 戸 ト ・ ヨ ト ・ ヨ

MKL and feature space denoising

MKL and Denoising: Single kernel performance

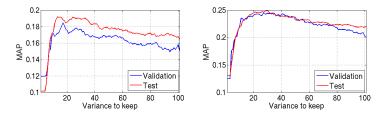


Figure: AP vs. variance kept in kernel PCA. Two kernels as examples.

 Choosing denoising level using a validation set ⇒ better single kernel performance (compared to original kernel)

MKL and feature space denoising

MKL and Denoising: MKL performance

Table: Comparing ℓ_p MK-FDA and fixed norm MK-FDAs

	ℓ_1 MK-FDA	ℓ_2 MK-FDA	ℓ_∞ MK-FDA	ℓ_p MK-FDA
original kernels	54.85	54.79	54.64	55.61
denoised kernels	54.26	56.06	55.82	56.17

- In general, denoised kernels are better than original ones
- ℓ_p is better than fixed norm, on both original and denoised
- Advantage of ℓ_p is much smaller with denoised kernels. Why?

・ 同 ト ・ ヨ ト ・ ヨ ト

MKL and feature space denoising

MKL and Denoising: Learnt kernel weight vs. noise level

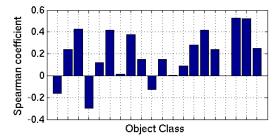


Figure: Spearman's coefficient between learnt kernel weights and variance kept in denoising. All 20 problems in PASCAL VOC07.

• Spearman's coefficient: measure ranking correlation

MKL and feature space denoising

MKL and Denoising: Learnt kernel weight vs. noise level

- Positive coefficients on most problems (16 out of 20):
 - The more noisy a kernel, the lower weight it gets
 - MKL essentially works by removing noise?
 - Maybe this is why ℓ_p not as advantageous on denoised kernels?
 - Maybe MKL should be done on per dimension basis instead of per kernel basis?
 - Linear combination assigns same weight to all dimensions in a feature space: it cannot remove noise completely
 - Maybe only nonlinear MKL can be optimal?

- 4 同 6 4 日 6 4 日

Conclusions

Conclusions

- A brief introduction to kernel methods
 - The kernel trick
 - Three examples: kernel PCA, SVM, and kernel FDA
 - Connection between SVM and kernel FDA
- Proposed an MKL method: ℓ_p regularised MK-FDA
 - Regularisation norm plays an important role in MKL
 - ℓ_p MK-FDA allows to learn intrinsic sparsity of base kernels \Rightarrow better performance than fixed norm MKL

- 4 同 6 4 日 6 4 日 6

Conclusions

Conclusions

- Investigated connection between MKL and feature space denoising
 - Denoising improves both single kernel and MKL performance
 - Positive correlation between weights and variance kept: the more noisy a kernel is, the lower its learnt weight
 - Linear kernel combination cannot take care of feature space denoising automatically
 - MKL should be done on per dimension basis instead of per kernel basis?
 - The optimal (non-linear) MKL is yet to be developed

・ロト ・同ト ・ヨト ・ヨト