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ART Neural Networks

The Adaptive Resonance Theory (ART) was developed by 
(Grossberg, 1976).

Fuzzy ARTMAP introduced in 1992 (Carpenter et. al., 1992).

A number of variations were introduced:
 Gaussian ARTMAP (Williamson, 1996)

 Ellipsoidal ARTMAP (Anagnostopoulos, 2001)

Advantages:
 Able to handle complex classification problems

 Converge quickly

 Able to recognize novelty

 Answers can be explained with relative ease
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Fuzzy ARTMAP
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 Input patterns are compressed to 
form regions or categories in the 
input space

 Learning or training is 
accomplished using examples

 Each category is mapped to a class 
label

 GAM (Williamson, 1996) and EAM 
(Anagnostopoulos, 2001) have similar 
architectures, but the category 
structure differs
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Learning in Fuzzy ARTMAP
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Learning in Fuzzy ARTMAP
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Learning in Fuzzy ARTMAP
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Fuzzy ARTMAP Equations

 Category Choice Function

 Category Match Function

Weight Update Function
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Fuzzy ARTMAP Parameters

 Choice Parameter: Determines the value of the bottom-

up inputs at the input category representation layer.

 Vigilance Parameter: Determines whether coarse of fine 

clusters are going to be formed in the input category 

representation layer.

 Order of Input pattern Presentation: Determines the 

Order according to which the input training data are going 

to be presented to Fuzzy ARTMAP 
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ART Learning
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Training Patterns

Box Creation in ART
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Noisy/Overlapping Data
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Noise / Overlapping patterns cause creation of unnecessary categories
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Effect of Noisy/Overlapping Data
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57 Categories formed 39 Categories formed
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Ideal ART Classifier
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Fuzzy ARTMAP Ellipsoidal ARTMAP
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Motivation for Work

There are two objectives for this research: 

Design an ART classifier that has a small size 

and is of good generalization, thus addressing 

the category proliferation problem

Design an ART classifier system that does not 

require the user to experiment with network 

parameters
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Category Proliferation : Solutions

 Eliminate match tracking mechanism such as in PROBART (Marriott 

et. al., 1995), micro-ARTMAP introduced by (Gomez-Sanchez et. al., 

2000) and safe micro-ARTMAP (Gomez-Sanchez et. al. 2001)

 Cross-validation: Stop learning when over-training is observed on a 

validation set (Koufakou et. al., 2001)

 Semi-supervised learning: Allow categories to encode patterns that are 

not mapped to the same label (Anagnostopoulos et. al., 2003)

 GART: Single objective generic optimization of ART architectures 

(Al-Daraiseh, et al., 2006)
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Functionality of ssFAM
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Choosing Network Parameters

There are some guidelines of how to choose the 

ART network parameters, such as choice 

parameter and vigilance parameter

Unfortunately there are no good guidelines of how 

to choose the order of training pattern presentation

Here comes Genetic ART
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Genetically Engineered ART  

Chromosomes encode categories belonging to an ART NN

A population of ART NN is initially trained, and then 
evolved for a number of generations

GA is used to evolve the structure and weights of ART 
NN’s

 Minimize complexity

 Maximize accuracy
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Advantages of Genetic ART

 Competitive results in terms of accuracy and size, 
compared to other ART architectures (to be seen)

 Genetic optimization of ARTMAP NN may achieve 
performance that might not be attainable by original 
ARTMAP training rules 
 Genetic operators allow mixing NNs (crossover), reducing the size 

(deletion), and altering categories (mutation)

 Genetic optimization provides opportunity for automated 
model selection 
 Avoiding NN parameter tweaking (to be seen)

 Minimizing interaction with human decision maker (to be seen)
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Genetically Optimized ART

GA is used to evolve ART NN’s

 Topology: Number of categories

Weights: Category size and location

Two objectives:

 Minimize error rate

 Minimize size (number of categories)

Chromosomes encode categories belonging to a network
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From GART to MO-GART

 Adaptive genetic algorithm
 Better utilizes the information gained from the testing of solutions during the 

genetic search 

 Improves effectiveness of genetic operators

 Improves efficiency of the algorithm

 Eliminates pre-specification of GA parameters

 Controlling the number of validation patterns used in the evolution
 Utilizes the ability of genetic algorithm to operate in noisy environments

 Improves the convergence speed

 Multi-objective evolution
 Better way to address a two-objective optimization problem

 Finds better solutions

 Utilizes the fact that GAs are population based, and can thus return multiple 
solutions in one run
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MO-GART
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MO-GART: Multi-objective

 It is often desirable to find all tradeoff 
solutions as they provide alternative 
solutions to the problem

 Availability of what is achievable allows 
the decision maker to choose appropriate 
compromise solutions to the problem

 GAs are population based search 
algorithms, and therefore can be used to 
find the solutions on the tradeoff surface 
in a single run
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MO-GART: Adaptive Evolution

 Deterministic 

 Without feedback about the performance or quality of solution 

achieved

 According to a schedule 

 Adaptive

 Based on feedback

 Constructs a relationship between feedback signal and parameter 

value

 Self-Adaptive

 GA parameters are encoded and evolved as part of the problem
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MO-GART: Adaptive Evolution

 Population level

 Adaptation of global parameters that are applied to all individuals

 Individual level

 For each individual separately

 E.g., mutation rate for every individual

 Component level

 Mutation rate for a component within each individual
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Fitness Assignment/Selection

 The fitness function is defined as the sum of the raw 

fitness (R(x)) and another term that penalizes solutions that 

are crowded by other solutions (Zietzler, 2001; SPEA2)

 R(x) is equal to the sum of the strengths of all its 

dominators 

 The strength of an individual is equal to number of 

solutions it dominates
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Fitness Assignment/Selection
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Credit Assignment

 For each network, and for each the category confidence factor is 

calculated as follows:

 where,

 and,
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CF Example Values
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 Adaptive, probabilistic pruning

 Based on the confidence factor for each category

 Probability of elimination is inversely proportional to a 

category’s CF: 

 The rate of pruning is automatically adjusted; does not 

need user to specify as parameter
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MO-GART Mutation

 Automatically adjusted mutation severity:

 Therefore the mutation severity is automatically adapted 

based on the performance of the category
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MO-GART Cross-Over

Combine selected parents to form the new 

chromosomes – one point crossover
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MO-GART (once more)
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Experiments

We experimented with a number of datasets

 For each dataset we had a training, a validation and a test 

set

We used the training set to design the model, the validation 

set to choose the network parameters, and the test set to 

report the network’s performance

We experimented with MO-GART, GART, ssART, SVM, 

and CART

 Experiments were fair: Used same datasets, and had the 

code implemented for all algorithms
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Measures of Comparison

 Accuracy of the best performing network (highest PCC)

 Size of the best performing network

 Time to produce the best performing network

Metric C

 C(A, B) close to 1…most members of B are dominated by a 

member of A

 C(A, B) close to 0 … very few members of B are dominated by a 

member of A
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Datasets
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MO-GART vs ssFAM
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MO-GART vs ssFAM

 The time required to produce the ssFAM solutions ended up being one 

to two orders of magnitude slower 

 The C (MO-GFAM, ss-FAM) values are all larger than 0.5, and most of 

them close to 1 (meaning that many ss-FAM solutions are dominated 

by a MO-GFAM solution)

 The C (ss-FAM, MO-GFAM) values are all smaller than 0.5 and most 

of them close to zero (meaning that very few MO-GFAM solutions are 

dominated by an ss-FAM solution)

 The ss-FAM performances (PCC) exhibited high variability (more than 

10%, a number of times)

 The MO-GFAM performances (PCC) exhibited low variability (less 

than 0.5% in most instances)
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MO-GART vs ssEAM
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MO-GART vs ssEAM

 The time required to produce the ssEAM solutions ended up being one 

to two orders of magnitude slower 

 The C (MO-GEAM, ss-EAM) values are all larger than 0.5, and most of 

them close to 1 

 The C(ss-EAM, MO-GEAM) values are all smaller than 0.5 and most 

of them close to zero

 The ss-EAM performances (PCC) exhibited high variability (more 

than 10%, at times)

 The MO-GEAM performances (PCC) exhibited low variability (less 

than  0.5% in most instances)
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MO-GART vs ssGAM
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MO-GART vs ssGAM

 The time required to produce the ssGAM solutions ended 

up being one to two orders of magnitude slower 

 The C (MO-GGAM, ss-GAM) values are all larger than 0.5, 

and most of them close to 1 

 The C(ss-GAM, MO-GGAM) values are all smaller than 

0.5 and most of them close to zero

 The ss-GAM performances (PCC) exhibited high 

variability (more than 10% in a number of times)

 The MO-GGAM performances (PCC) exhibited low 

variability (less than 0.5% in most instances)
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MO-GART vs SVM
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MO-GART vs SVM

 The time required to produce the MO-GART solutions 

ended up being faster than the time required to produce the 

SVM solutions 

 Overall, SVM performs better (PCC) than MO-GART but 

not statistically significantly better, except in one case

 The SVM performances (PCC) exhibited high variability 

(more than 10% in a number of times)

 The MO-GART performances (PCC) exhibited low 

variability (less than 0.5% in most instances)
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MO-GART vs CART
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MO-GART vs CART

The time required to produce the MO-GART 

solutions ended up being orders of magnitude 

slower than the time require to produce the CART 

solutions 

Overall, MO-GART performs better (PCC) than 

CART, and in most instances statistically 

significantly better
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Summary

 A new family of ART classifiers is introduced that 

 Has good generalization

 Is of small size

 Is efficient in terms of training time

 Does not require tweaking of the network parameters

 Compared to previously introduced ART architectures and 

shown to be superior

 Shown to be competitive against other popular classifiers, 

such as SVM and CART
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