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ART Neural Networks

1 The Adaptive Resonance Theory (ART) was developed by
(Grossberg, 1976).

 Fuzzy ARTMAP introduced in 1992 (Carpenter et. al., 1992).

J A number of variations were introduced:

» Gaussian ARTMAP (Williamson, 1996)
> Ellipsoidal ARTMAP (Anagnostopoulos, 2001)

J Advantages:
> Able to handle complex classification problems
» Converge quickly
» Able to recognize novelty
» Answers can be explained with relative ease
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Fuzzy ARTMAP

4 Input patterns are compressed to 3
form regions or categories in the
Input space

4 Learning or training Is F;
accomplished using examples

] Each category is mapped to a class
label Fe

d GAM (williamson, 1996) and EAM

(Anagnostopoulos, 2001) have similar
architectures, but the category
structure differs

11/23/2010

Output Labels

ab
HWi

Category Nodes

Match Tracking



Learning in Fuzzy ARTMAP
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Learning in Fuzzy ARTMAP
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Learning in Fuzzy ARTMAP
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Fuzzy ARTMAP Equations

] Category Choice Function
M, —dis (I,R}) - s(R})
ﬁa + Ma - S(RT)

TH(1)=

] Category Match Function
S(REM) <M, (1- p,)

1 Weight Update Function
s(Rj") =s(R7)+dis (I,R)
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Fuzzy ARTMAP Parameters

] Choice Parameter: Determines the value of the bottom-
up inputs at the input category representation layer.

1 Vigilance Parameter: Determines whether coarse of fine
clusters are going to be formed in the input category
representation layer.

 Order of Input pattern Presentation: Determines the
Order according to which the input training data are going
to be presented to Fuzzy ARTMAP
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ART Learning

Training Patterns ) :I

Box Creation in ART
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Noisy/Overlapping Data
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Noise / Overlapping patterns cause creation of unnecessary categories
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Effect of Noisy/Overlapping Data
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39 Categories formed

57 Categories formed
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Ideal ART Classifier

Fuzzy ARTMAP Ellipsoidal ARTMAP
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Motivation for Work

1 There are two objectives for this research:

»Design an ART classifier that has a small size
and Is of good generalization, thus addressing
the category proliferation problem

»Design an ART classifier system that does not
require the user to experiment with network
parameters
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Category Proliferation : Solutions

O Eliminate match tracking mechanism such as in PROBART (Marriott
et. al., 1995), micro-ARTMAP introduced by (Gomez-Sanchez et. al.,
2000) and safe micro-ARTMAP (Gomez-Sanchez et. al. 2001)

O Cross-validation: Stop learning when over-training is observed on a
validation set (Koufakou et. al., 2001)

O Semi-supervised learning: Allow categories to encode patterns that are
not mapped to the same label (Anagnostopoulos et. al., 2003)

O GART: Single objective generic optimization of ART architectures
(Al-Daraiseh, et al., 20006)
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Functionality of ssFAM

L

Red Pattern
will be
absorbed by
the shown
category, if the
category
passes

prediction test

) ssFAM has one more
1 parameter

Red Pattern will Allowed Prediction
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Choosing Network Parameters

d There are some guidelines of how to choose the
ART network parameters, such as choice
parameter and vigilance parameter

J Unfortunately there are no good guidelines of how
to choose the order of training pattern presentation

JHere comes Genetic ART
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Genetically Engineered ART

1 Chromosomes encode categories belonging to an ART NN

1 A population of ART NN is initially trained, and then
evolved for a number of generations

1 GA is used to evolve the structure and weights of ART
NN’s
» Minimize complexity
» Maximize accuracy
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Advantages of Genetic ART

J Competitive results in terms of accuracy and size,
compared to other ART architectures (to be seen)

1 Genetic optimization of ARTMAP NN may achieve
performance that might not be attainable by original
ARTMAP training rules

» Genetic operators allow mixing NNs (crossover), reducing the size
(deletion), and altering categories (mutation)

J Genetic optimization provides opportunity for automated
model selection

» Avoiding NN parameter tweaking (to be seen)
» Minimizing interaction with human decision maker (to be seen)
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Genetically Optimized ART

J GA 1s used to evolve ART NN’s

» Topology: Number of categories
» Weights: Category size and location

J Two objectives:
» Minimize error rate
» Minimize size (number of categories)

J Chromosomes encode categories belonging to a network

Chromosome p

! WP WP) | eeeme [ WSP) | e wy (P) | Level 1
b
LL | -~ 1 | e ul(p) (vip) [P eeee= Level 2
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From GART to MO-GART

O Adaptive genetic algorithm

> Better utilizes the information gained from the testing of solutions during the
genetic search

Improves effectiveness of genetic operators
Improves efficiency of the algorithm
Eliminates pre-specification of GA parameters

YV VYV V

O Controlling the number of validation patterns used in the evolution
» Utilizes the ability of genetic algorithm to operate in noisy environments
» Improves the convergence speed

O Multi-objective evolution
» Better way to address a two-objective optimization problem
» Finds better solutions

> Utilizes the fact that GAs are population based, and can thus return multiple
solutions in one run
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MO-GART
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P(0) «+— Generate-Initial-Population();

A(0) — Imtialize-Empty-Archive():

for t — 1 to Gen,,,. do
Evaluation();
Update-Archive(P(t). A(t)):

if stopping criteria met then exat for;

P'(t) «— Selection( P(t). A(t)):
P(t) — Reproduction(F'(t));
end
return A(t);
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MO-GART: Multi-objective

O It is often desirable to find all tradeoff
;i : i o o
solutions as they provide alternative @ 00,0
solutions to the problem ®e % o o o®
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O Availability of what is achievable allows
the decision maker to choose appropriate
compromise solutions to the problem - o

 GAs are population based search Sjze
algorithms, and therefore can be used to
find the solutions on the tradeoff surface
In a single run
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MO-GART: Adaptive Evolution

] Deterministic

» Without feedback about the performance or quality of solution
achieved

» According to a schedule

1 Adaptive
» Based on feedback

» Constructs a relationship between feedback signal and parameter
value

1 Self-Adaptive

» GA parameters are encoded and evolved as part of the problem
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MO-GART: Adaptive Evolution

1 Population level
» Adaptation of global parameters that are applied to all individuals

- Individual level
» For each individual separately
» E.g., mutation rate for every individual

d Component level
» Mutation rate for a component within each individual
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Fitness Assignment/Selection

1 The fitness function is defined as the sum of the raw
fitness (R(x)) and another term that penalizes solutions that
are crowded by other solutions ( )

 R(x) is equal to the sum of the strengths of all its
dominators

1 The strength of an individual is equal to number of
solutions it dominates

Fit(x) = R(x) + L

+dis,
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Fitness Assignment/Selection
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Credit Assignment

O For each network, and for each the category confidence factor is

calculated as follows: Confidence of
Category

K ﬁ K
CF(p)=0.5-A/(p)+0.5-S;(p)

O where, k ij ( p) / C;( ( p) «— Accuracy of
Aj (p) _ - " Category
3 and, ’ Selectivity of
<k (p) — Cj (P) — Category
j _ k
max ; C*(p)
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CF Example Values
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MO-GART Pruning

1 Adaptive, probabilistic pruning
] Based on the confidence factor for each category

1 Probability of elimination is inversely proportional to a
category’s CF:

PDel | (p) = (1—CF/(p))

 The rate of pruning is automatically adjusted; does not
need user to specify as parameter
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MO-GART Mutation

J Automatically adjusted mutation severity:

SFY(p)=0.05- (L-CF(p))

 Therefore the mutation severity is automatically adapted
based on the performance of the categol'y
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MO-GART Cross-Over

_J1Combine selected parents to form the new
chromosomes — one point crossover

Plwilp)|wilp) | wilp) |wilp) | wil(p)

> '.1'1"'{;_1} u"_;'{p} w‘_j{;_:'} w;’{p'}

p' (WP )| wilph)| wilp') wi(p')| wi(p')
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MO-GART (once more)
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F(0) +— Generate-Initial-Population( );
A(0) «— Imtialize-Empty-Archive( );
for t — 1 to Gen,,,. do
Evaluation();
Update-Archive( P(t), A(t));
if stopping criteria met then exat for;
P'(t) +— Selection( P(t), A(t));
P(t) — Reproduction( P'(t));
end
return A(f);
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Experiments

] We experimented with a number of datasets

J For each dataset we had a training, a validation and a test
set

] We used the training set to design the model, the validation
set to choose the network parameters, and the test set to
report the network’s performance

1 We experimented with MO-GART, GART, ssART, SVM,
and CART

1 Experiments were fair: Used same datasets, and had the
code implemented for all algorithms
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Measures of Comparison

1 Accuracy of the best performing network (highest PCC)
1 Size of the best performing network
] Time to produce the best performing network

J Metric C
_|beB:JacAa-h]

C(A,B)

B
» C(A, B) close to 1...most members of B are dominated by a
member of A
» C(A, B) close to 0 ... very few members of B are dominated by a
member of A
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Ci/Sq
G4C-25
G6-15
Iris
Page
Pdigits
Sat

Seg
Wave
Abalone

Odigits

Datasets

2000
500
504
500
500

4494

2000
800

1000
501

1823

5000
5000
5004
4800
2486
3000
2436
810
2000
1838
2000

3000
5000
5004
4800
2487
3498
2000
700
2000
1838
1797
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MO-GART vs ssFAM
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1Ci/Sq (2000)
G4C-25(500)
G6C-15(504)

Iris (500)

Page (500)
Pendigits (4494)
Sat (2000)
Segmentation (800)
Wavetorm (1000)
Abalone (501)
Optidigits (1823)
Average PCC

97.97 /31
76.00/4
84.59 /6
95.19/2
96.45/5

98.27 /271

89.12/175
95.43/25
86.30/3
66.50/5

98.05,/272

89.44

98.10/78
74.22 /4
82.49/9
94.56/2
94.77 /6
97.14/66
84.20/51
94.14/32
75.65/16
56.89/34
87.20/52
85.40
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MO-GART vs ssFAM

The time required to produce the ssFAM solutions ended up being one
to two orders of magnitude slower

The C (MO-GFAM, ss-FAM) values are all larger than 0.5, and most of
them close to 1 (meaning that many ss-FAM solutions are dominated
by a MO-GFAM solution)

The C (ss-FAM, MO-GFAM) values are all smaller than 0.5 and most
of them close to zero (meaning that very few MO-GFAM solutions are
dominated by an ss-FAM solution)

The ss-FAM performances (PCC) exhibited high variability (more than
10%, a number of times)

The MO-GFAM performances (PCC) exhibited low variability (less
than 0.5% in most instances)
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MO-GART vs ssEAM

11/23/2010

1Ci/Sq (2000)
G4C-25 (500)
G6C-15(504)

Iris (500)

Page (500)
Pendigits (4494)
Sat (2000)
Segmentation (800)
Waveform (1000)
Abalone (501)
Optidigits (1823)
Average PCC

9776 /2
75.54/4
84.69/6
95.24/2
96.40/5
98.90/331
88.34/198
93.86/52
86.35/5
66.40/6
98.40/418
89.44

97.40 /99
73.90/4
83.23/24
94.65/2
94.44/24
96.60/179
85.50/141
91.57/83
79.80/12
57.42/5
91.93/122
86.04
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MO-GART vs ssEAM

 The time required to produce the sSEAM solutions ended up being one
to two orders of magnitude slower

O The C (MO-GEAM, ss-EAM) values are all larger than 0.5, and most of
them close to 1

 The C(ss-EAM, MO-GEAM) values are all smaller than 0.5 and most
of them close to zero

O The ss-EAM performances (PCC) exhibited high variability (more
than 10%, at times)

O The MO-GEAM performances (PCC) exhibited low variability (less
than 0.5% in most instances)
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MO-GART vs ssGAM
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1Ci/Sq (2000)
G4C-25(500)
G6C-15(504)

Iris (500)

Page (500)
Pendigits (4494)
Sat (2000)
Segmentation (800)
Waveform (1000)
Abalone (501)
Optidigits (1823)
Average PCC

99.80 /2
75.92/4
85.17 /6
94.90/2
96.38/5
98.10/88
88.75/106
92.59/13
87.15/4
67.30/5
97.15/161
89.38

94.63/26

74.84/23

85.07/20
95.21/7

94.52/7

97.43/87
87.00/81
91.29/31
85.35/11
57.19/30
92.21/55

86.79
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MO-GART vs ssGAM

] The time required to produce the ssGAM solutions ended
up being one to two orders of magnitude slower

 The C (MO-GGAM, ss-GAM) values are all larger than 0.5,
and most of them close to 1

 The C(ss-GAM, MO-GGAM) values are all smaller than
0.5 and most of them close to zero

 The ss-GAM performances (PCC) exhibited high
variability (more than 10% in a number of times)

d The MO-GGAM performances (PCC) exhibited low
variability (less than 0.5% in most instances)
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MO-GART vs SVM

1Ci/Sq (2000)
G4C-25(500)
G6C-15(504)
Iris (500)

Page (500)
Pendigits (4494)
Sat (2000)
Seg (800)
Wayv (1000)
Abalone (501)
Opti (1823)
Average PCC

11/23/2010

97.97 /31
76.00/4
84.59 /6
95.19/2
96.45/5

98.27 /271

89.12/175
95.43/25
86.30/3
66.50/5

98.05/272

89.44

97.76 /2
75.54/4
84.69 /6
95.24/2
96.40/5
98.90/331
88.34/198
93.86/52
86.35/5
66.40/6
98.40/418
89.44

99.80 /2
75.92/4
85.17 /6
94.90/2
96.38/5
98.10/88
88.75/106
92.59/13
87.15/4
67.30/5
97.15/161
89.38

99.67/88
75.24/277
84.99/504
95.04/79
95.30,/150
99.54/929
90.25,/1081
97.29/230
87.45/574
61.66/337
97.22/673
89.41

ALY
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MO-GART vs SVM

1 The time required to produce the MO-GART solutions
ended up being faster than the time required to produce the
SVM solutions

 Overall, SVM performs better (PCC) than MO-GART but
not statistically significantly better, except in one case

 The SVM performances (PCC) exhibited high variability
(more than 10% in a number of times)

 The MO-GART performances (PCC) exhibited low
variability (less than 0.5% in most instances)
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MO-GART vs CART

1Ci/Sq (2000)
G4C-25 (500)
G6C-15 (504)
Iris (500)

Page (500)
Pendigits (4494)
Sat (2000)

Seg (800)
Wave (1000)
Abalone (501)
Optidigits (1823)
Average PCC
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97.97 /31
76.00/4
84.59/6
95.19/2
96.45/5

98.27 /271

89.12/175
95.43/25
86.30/3
66.50/5

98.05/272

89.44

97.76 /2
75.54/4
84.69/6
95.24/2
96.40/5

98.90/331
88.34/198
93.86/52

86.35/5
66.40/6

98.40/418

89.44

99.80 /2
75.92/4
85.17/6
94.90/2
96.38/5

98.10/88
88.75/106
92.59/13

87.15/4
67.30/5

97.15/161

89.38

ALY

97.57/28
73.50/4
80.42/6
94.02/4
93.84/7

93.37/109

84.35/22
93.43/17
75.20/14
61.18/17
82.42/88

84.48
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MO-GART vs CART

JThe time required to produce the MO-GART
solutions ended up being orders of magnitude
slower than the time require to produce the CART
solutions

dOverall, MO-GART performs better (PCC) than
CART, and in most instances statistically
significantly better
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Summary

d A new family of ART classifiers is introduced that
» Has good generalization
> Is of small size
> |s efficient in terms of training time
» Does not require tweaking of the network parameters

1 Compared to previously introduced ART architectures and
shown to be superior

J Shown to be competitive against other popular classifiers,
such as SVM and CART
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