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ART Neural Networks

The Adaptive Resonance Theory (ART) was developed by 
(Grossberg, 1976).

Fuzzy ARTMAP introduced in 1992 (Carpenter et. al., 1992).

A number of variations were introduced:
 Gaussian ARTMAP (Williamson, 1996)

 Ellipsoidal ARTMAP (Anagnostopoulos, 2001)

Advantages:
 Able to handle complex classification problems

 Converge quickly

 Able to recognize novelty

 Answers can be explained with relative ease
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Fuzzy ARTMAP
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 Input patterns are compressed to 
form regions or categories in the 
input space

 Learning or training is 
accomplished using examples

 Each category is mapped to a class 
label

 GAM (Williamson, 1996) and EAM 
(Anagnostopoulos, 2001) have similar 
architectures, but the category 
structure differs
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Learning in Fuzzy ARTMAP

11/23/2010 5

R
j
a

v
j
a

u
j
a

0
0

1

1



MACHINE LEARNING LAB

Learning in Fuzzy ARTMAP
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Learning in Fuzzy ARTMAP
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Fuzzy ARTMAP Equations

 Category Choice Function

 Category Match Function

Weight Update Function
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Fuzzy ARTMAP Parameters

 Choice Parameter: Determines the value of the bottom-

up inputs at the input category representation layer.

 Vigilance Parameter: Determines whether coarse of fine 

clusters are going to be formed in the input category 

representation layer.

 Order of Input pattern Presentation: Determines the 

Order according to which the input training data are going 

to be presented to Fuzzy ARTMAP 
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ART Learning
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Training Patterns

Box Creation in ART
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Noisy/Overlapping Data
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Noise / Overlapping patterns cause creation of unnecessary categories
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Effect of Noisy/Overlapping Data
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57 Categories formed 39 Categories formed
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Ideal ART Classifier
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Fuzzy ARTMAP Ellipsoidal ARTMAP
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Motivation for Work

There are two objectives for this research: 

Design an ART classifier that has a small size 

and is of good generalization, thus addressing 

the category proliferation problem

Design an ART classifier system that does not 

require the user to experiment with network 

parameters
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Category Proliferation : Solutions

 Eliminate match tracking mechanism such as in PROBART (Marriott 

et. al., 1995), micro-ARTMAP introduced by (Gomez-Sanchez et. al., 

2000) and safe micro-ARTMAP (Gomez-Sanchez et. al. 2001)

 Cross-validation: Stop learning when over-training is observed on a 

validation set (Koufakou et. al., 2001)

 Semi-supervised learning: Allow categories to encode patterns that are 

not mapped to the same label (Anagnostopoulos et. al., 2003)

 GART: Single objective generic optimization of ART architectures 

(Al-Daraiseh, et al., 2006)
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Functionality of ssFAM
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Choosing Network Parameters

There are some guidelines of how to choose the 

ART network parameters, such as choice 

parameter and vigilance parameter

Unfortunately there are no good guidelines of how 

to choose the order of training pattern presentation

Here comes Genetic ART
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Genetically Engineered ART  

Chromosomes encode categories belonging to an ART NN

A population of ART NN is initially trained, and then 
evolved for a number of generations

GA is used to evolve the structure and weights of ART 
NN’s

 Minimize complexity

 Maximize accuracy
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Advantages of Genetic ART

 Competitive results in terms of accuracy and size, 
compared to other ART architectures (to be seen)

 Genetic optimization of ARTMAP NN may achieve 
performance that might not be attainable by original 
ARTMAP training rules 
 Genetic operators allow mixing NNs (crossover), reducing the size 

(deletion), and altering categories (mutation)

 Genetic optimization provides opportunity for automated 
model selection 
 Avoiding NN parameter tweaking (to be seen)

 Minimizing interaction with human decision maker (to be seen)
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Genetically Optimized ART

GA is used to evolve ART NN’s

 Topology: Number of categories

Weights: Category size and location

Two objectives:

 Minimize error rate

 Minimize size (number of categories)

Chromosomes encode categories belonging to a network
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From GART to MO-GART

 Adaptive genetic algorithm
 Better utilizes the information gained from the testing of solutions during the 

genetic search 

 Improves effectiveness of genetic operators

 Improves efficiency of the algorithm

 Eliminates pre-specification of GA parameters

 Controlling the number of validation patterns used in the evolution
 Utilizes the ability of genetic algorithm to operate in noisy environments

 Improves the convergence speed

 Multi-objective evolution
 Better way to address a two-objective optimization problem

 Finds better solutions

 Utilizes the fact that GAs are population based, and can thus return multiple 
solutions in one run
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MO-GART
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MO-GART: Multi-objective

 It is often desirable to find all tradeoff 
solutions as they provide alternative 
solutions to the problem

 Availability of what is achievable allows 
the decision maker to choose appropriate 
compromise solutions to the problem

 GAs are population based search 
algorithms, and therefore can be used to 
find the solutions on the tradeoff surface 
in a single run

11/23/2010 23

Size

E
rr



MACHINE LEARNING LAB

MO-GART: Adaptive Evolution

 Deterministic 

 Without feedback about the performance or quality of solution 

achieved

 According to a schedule 

 Adaptive

 Based on feedback

 Constructs a relationship between feedback signal and parameter 

value

 Self-Adaptive

 GA parameters are encoded and evolved as part of the problem
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MO-GART: Adaptive Evolution

 Population level

 Adaptation of global parameters that are applied to all individuals

 Individual level

 For each individual separately

 E.g., mutation rate for every individual

 Component level

 Mutation rate for a component within each individual
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Fitness Assignment/Selection

 The fitness function is defined as the sum of the raw 

fitness (R(x)) and another term that penalizes solutions that 

are crowded by other solutions (Zietzler, 2001; SPEA2)

 R(x) is equal to the sum of the strengths of all its 

dominators 

 The strength of an individual is equal to number of 

solutions it dominates
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Fitness Assignment/Selection
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Credit Assignment

 For each network, and for each the category confidence factor is 

calculated as follows:

 where,

 and,
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CF Example Values
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 Adaptive, probabilistic pruning

 Based on the confidence factor for each category

 Probability of elimination is inversely proportional to a 

category’s CF: 

 The rate of pruning is automatically adjusted; does not 

need user to specify as parameter
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MO-GART Mutation

 Automatically adjusted mutation severity:

 Therefore the mutation severity is automatically adapted 

based on the performance of the category
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MO-GART Cross-Over

Combine selected parents to form the new 

chromosomes – one point crossover
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MO-GART (once more)
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Experiments

We experimented with a number of datasets

 For each dataset we had a training, a validation and a test 

set

We used the training set to design the model, the validation 

set to choose the network parameters, and the test set to 

report the network’s performance

We experimented with MO-GART, GART, ssART, SVM, 

and CART

 Experiments were fair: Used same datasets, and had the 

code implemented for all algorithms
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Measures of Comparison

 Accuracy of the best performing network (highest PCC)

 Size of the best performing network

 Time to produce the best performing network

Metric C

 C(A, B) close to 1…most members of B are dominated by a 

member of A

 C(A, B) close to 0 … very few members of B are dominated by a 

member of A

11/23/2010 35

||

|,:|
),(

B

baAaBb
BAC






MACHINE LEARNING LAB

Datasets

11/23/2010 36



MACHINE LEARNING LAB

MO-GART vs ssFAM
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MO-GART vs ssFAM

 The time required to produce the ssFAM solutions ended up being one 

to two orders of magnitude slower 

 The C (MO-GFAM, ss-FAM) values are all larger than 0.5, and most of 

them close to 1 (meaning that many ss-FAM solutions are dominated 

by a MO-GFAM solution)

 The C (ss-FAM, MO-GFAM) values are all smaller than 0.5 and most 

of them close to zero (meaning that very few MO-GFAM solutions are 

dominated by an ss-FAM solution)

 The ss-FAM performances (PCC) exhibited high variability (more than 

10%, a number of times)

 The MO-GFAM performances (PCC) exhibited low variability (less 

than 0.5% in most instances)
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MO-GART vs ssEAM
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MO-GART vs ssEAM

 The time required to produce the ssEAM solutions ended up being one 

to two orders of magnitude slower 

 The C (MO-GEAM, ss-EAM) values are all larger than 0.5, and most of 

them close to 1 

 The C(ss-EAM, MO-GEAM) values are all smaller than 0.5 and most 

of them close to zero

 The ss-EAM performances (PCC) exhibited high variability (more 

than 10%, at times)

 The MO-GEAM performances (PCC) exhibited low variability (less 

than  0.5% in most instances)

11/23/2010 40



MACHINE LEARNING LAB

MO-GART vs ssGAM
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MO-GART vs ssGAM

 The time required to produce the ssGAM solutions ended 

up being one to two orders of magnitude slower 

 The C (MO-GGAM, ss-GAM) values are all larger than 0.5, 

and most of them close to 1 

 The C(ss-GAM, MO-GGAM) values are all smaller than 

0.5 and most of them close to zero

 The ss-GAM performances (PCC) exhibited high 

variability (more than 10% in a number of times)

 The MO-GGAM performances (PCC) exhibited low 

variability (less than 0.5% in most instances)
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MO-GART vs SVM
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MO-GART vs SVM

 The time required to produce the MO-GART solutions 

ended up being faster than the time required to produce the 

SVM solutions 

 Overall, SVM performs better (PCC) than MO-GART but 

not statistically significantly better, except in one case

 The SVM performances (PCC) exhibited high variability 

(more than 10% in a number of times)

 The MO-GART performances (PCC) exhibited low 

variability (less than 0.5% in most instances)
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MO-GART vs CART
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MO-GART vs CART

The time required to produce the MO-GART 

solutions ended up being orders of magnitude 

slower than the time require to produce the CART 

solutions 

Overall, MO-GART performs better (PCC) than 

CART, and in most instances statistically 

significantly better
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Summary

 A new family of ART classifiers is introduced that 

 Has good generalization

 Is of small size

 Is efficient in terms of training time

 Does not require tweaking of the network parameters

 Compared to previously introduced ART architectures and 

shown to be superior

 Shown to be competitive against other popular classifiers, 

such as SVM and CART
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