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Technische Universität München (TUM)
Technical University of Munich

Established in 1868

Located in Munich, Bavaria, Germany

12 departments → Electrical Engineering and Information
Technology

Approximately 21,600 students (2006)

4,160 academic staff-395 Professors

Consistent ranking amongst the best universities in Ger-
many (DAAD)
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Lehrstuhl für Netzwerktheorie und Signalverarbeitung (NWS)
Institute for Circuit Theory and Signal Processing

Head: Professor Josef A. Nossek

Webpage: www.nws.ei.tum.de
Research areas: Consistent modeling of physical layer

Processing of quantized signals
Cellular systems
Filter-bank based multicarrier systems
Cross-layer optimization
Array processing for multipath and interference mitigation
for Global Navigation Satellite Systems
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Lehrstuhl für Netzwerktheorie und Signalverarbeitung (NWS)
Institute for Circuit Theory and Signal Processing

Head: Professor Josef A. Nossek

Webpage: www.nws.ei.tum.de
Research areas: Consistent modeling of physical layer

Processing of quantized signals
Cellular systems
Filter-bank based multicarrier systems
Cross-layer optimization
Array processing for multipath and interference mitigation
for Global Navigation Satellite Systems
Random matrix theory for wireless communications
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Research collaborators-Some wonderful people!!

Prof. Akbar M. Sayeed (University of Winsonsin-Madison)

Prof. Peter J. Smith (University of Canterbury, New
Zealand)

Dr. Matthew R. McKay (Hong Kong University of Science
and Technology, Hong Kong)

Prof. George K. Karagiannidis (Aristotle University of
Thessaloniki, Greece)

Dr. David I. Laurenson (University of Edinburgh, UK)

Dr. Cheng-Xiang Wang (University of Heriot-Watt, UK)
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Presentation outline

Overview of MIMO technology

General applications of random matrix theory (RMT) to MIMO
communications

Generic framework for the standard condition number (SCN)
distribution of Wishart matrices

Conclusions

Future research - Open problems
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Overview of MIMO technology

Developed by Telatar and Foschini in mid-90s
Multiple antenna elements at both the transmitter/receiver
Array (beamforming) gain, spatial diversity
Additional selectivity domain (spatial) → multiplexing gains
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Overview of MIMO technology

Developed by Telatar and Foschini in mid-90s
Multiple antenna elements at both the transmitter/receiver
Array (beamforming) gain, spatial diversity
Additional selectivity domain (spatial) → multiplexing gains
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Overview of MIMO technology

Developed by Telatar and Foschini in mid-90s
Multiple antenna elements at both the transmitter/receiver
Array (beamforming) gain, spatial diversity
Additional selectivity domain (spatial) → multiplexing gains

 Direct (LoS)

 Indirect (NLoS)
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scatterer
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elements
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elements

High degree of multipath activity (i.i.d. Rayleigh fading) →
linear capacity increase with s = min(Nt ,Nr )

Technische Universit ät München Institute for Circuit Theory and Signal Processing



08/01/2010 10/50 Informatics and Telematics Institute

Mathematical background

MIMO system with Nt transmit and Nr receive antennas

s = min(Nt ,Nr ) and t = max(Nt ,Nr )

Complex input-output relationship

y = Hx + n (1)

MIMO channel matrix response H ∈ C
Nr×Nt
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Mathematical background

MIMO system with Nt transmit and Nr receive antennas

s = min(Nt ,Nr ) and t = max(Nt ,Nr )

Complex input-output relationship

y = Hx + n (1)

MIMO channel matrix response H ∈ C
Nr×Nt

Instantaneous MIMO correlation matrix W ∈ C
s×s

W =

{
HH†, if Nr ≤ Nt

H†H, if Nr > Nt
(2)
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Mathematical background

MIMO system with Nt transmit and Nr receive antennas

s = min(Nt ,Nr ) and t = max(Nt ,Nr )

Complex input-output relationship

y = Hx + n (1)

MIMO channel matrix response H ∈ C
Nr×Nt

Instantaneous MIMO correlation matrix W ∈ C
s×s

W =

{
HH†, if Nr ≤ Nt

H†H, if Nr > Nt
(2)

is Hermitian, positive semi-definite and random.
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Applications of RMT to MIMO communications - Example 1

MIMO ergodic capacity assuming uniform power allocation

C = E
[

log2

(

det
(

INr +
SNR
Nt

HH†

))]

(3)

= E
[

s∑

k=1

log2

(

1 +
SNR
Nt

λk

)]

(4)

=

∫ ∞

0
log2

(

1 +
SNR
Nt

λ

)

p(λ)dλ (5)

where λ1 ≥ λ2 ≥ . . . λs ≥ 0 are the real, non-negative,
ordered eigenvalues of W.
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Applications of RMT to MIMO communications - Example 1

MIMO ergodic capacity assuming uniform power allocation

C = E
[

log2

(

det
(

INr +
SNR
Nt

HH†

))]

(3)

= E
[

s∑

k=1

log2

(

1 +
SNR
Nt

λk

)]

(4)

=

∫ ∞

0
log2

(

1 +
SNR
Nt

λ

)

p(λ)dλ (5)

where λ1 ≥ λ2 ≥ . . . λs ≥ 0 are the real, non-negative,
ordered eigenvalues of W.
High-SNR ergodic capacity (SNR→ ∞)

C = s log2 (SNR/Nt) +
1

ln 2
E

[

ln(det(HH†))
]

(6)
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Applications of RMT to MIMO communications - Example 2

Concept of maximum ratio combining (MRC) reception ⇒
Transmit along the dominant MIMO eigenmode (strongest
eigenvalue of W)
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Applications of RMT to MIMO communications - Example 2

Concept of maximum ratio combining (MRC) reception ⇒
Transmit along the dominant MIMO eigenmode (strongest
eigenvalue of W)

y =
√
γ̄Hwx + n (7)

Beamforming vector w with E [|w||2] = 1
Transmitted symbol x , E [|x ||2] = 1
Average SNR, γ̄
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Applications of RMT to MIMO communications - Example 2

Concept of maximum ratio combining (MRC) reception ⇒
Transmit along the dominant MIMO eigenmode (strongest
eigenvalue of W)

y =
√
γ̄Hwx + n (7)

Beamforming vector w with E [|w||2] = 1
Transmitted symbol x , E [|x ||2] = 1
Average SNR, γ̄
Principle of MRC at the receive side

z = w†H†y =
√
γ̄w†H†Hwx + w†H†n (8)

Technische Universit ät München Institute for Circuit Theory and Signal Processing



08/01/2010 18/50 Informatics and Telematics Institute

Applications of RMT to MIMO communications - Example 2

Concept of maximum ratio combining (MRC) reception ⇒
Transmit along the dominant MIMO eigenmode (strongest
eigenvalue of W)

y =
√
γ̄Hwx + n (7)

Beamforming vector w with E [|w||2] = 1
Transmitted symbol x , E [|x ||2] = 1
Average SNR, γ̄
Principle of MRC at the receive side

z = w†H†y =
√
γ̄w†H†Hwx + w†H†n (8)

SNR at the output of combiner

γ = γ̄w†H†Hw (9)

= γ̄w†
optH

†Hwopt = γ̄λ1 (10)
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Summary of RMT applications

Derive analytical closed-form expressions for the most important
MIMO feautures
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Summary of RMT applications

Derive analytical closed-form expressions for the most important
MIMO feautures

Ergodic/outage capacity

Higher-order capacity moments (variance, skewness,...)

Symbol error rate (SER)-Outage probability of SM-MIMO

Singular value decomposition (SVD) MIMO

Performance of beamforming/MRC schemes

Asymptotic characterization of MIMO systems (i.e. number
of antennas grows infinitely large)
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MIMO fading models and Wishart matrices

What is the most appropriate model for the channel fading
statistics?

We need something simple and realistic at the same time!

Physical measurement campaigns and theoretical studies
have demonstrated that the channel statistics can be effi-
ciently modeled via the complex normal distribution.
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MIMO fading models and Wishart matrices

What is the most appropriate model for the channel fading
statistics?

We need something simple and realistic at the same time!

Physical measurement campaigns and theoretical studies
have demonstrated that the channel statistics can be effi-
ciently modeled via the complex normal distribution.

Rayleigh or Ricean fading models?

Correlated or unocorrelated fading?

Semi or doubly-correlated fading?
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MIMO fading models and Wishart matrices

What is the most appropriate model for the channel fading
statistics?

We need something simple and realistic at the same time!

Physical measurement campaigns and theoretical studies
have demonstrated that the channel statistics can be effi-
ciently modeled via the complex normal distribution.

Rayleigh or Ricean fading models?

Correlated or unocorrelated fading?

Semi or doubly-correlated fading?

In any case, the correlation matrix W follows a complex Wishart
distribution. This is some very good news for MIMO people!
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MIMO fading models and Wishart matrices

Uncorrelated Rayleigh fading MIMO model

H = Hw (11)

where Hw is an (Nr × Nt) matrix whose entries are complex
zero-mean unity variance RVs, i.e. ∼ CN (0,1).

The matrix W is uncorrelated central Wishart with t
degrees of freedom (DoF), W ∼ CWs(t , Is).
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MIMO fading models and Wishart matrices

Semi-correlated Rayleigh fading MIMO model

H =

{

Σ
1/2
s Hw , if Nr ≤ Nt

HwΣ
1/2
s , if Nr > Nt .

(12)

with Σs ∈ C
s×s being a positive definite matrix containing

the variances of the entries of H on its main diagonal.

The matrix W is semi-correlated central Wishart with t DoF,
W ∼ CWs(t ,Σs).
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MIMO fading models and Wishart matrices

Uncorrelated Ricean fading MIMO model

H =

√

Kr

Kr + 1
HL

︸ ︷︷ ︸

LoS component

+

√

1
Kr + 1

Hw

︸ ︷︷ ︸

Scattered waves

(13)

where Kr is the Ricean K -factor.

The matrix W is uncorrelated non-central Wishart with t
DoF, W ∼ CWs

(

t ,1/(Kr + 1)Is,Kr/(Kr + 1)HLH†
L

)

.
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Investigation of the standard condition number (SCN)

Ratio of the largest to the smallest eigenvalue

z =
λ1

λs
≥ 1. (14)
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Investigation of the standard condition number (SCN)

Ratio of the largest to the smallest eigenvalue

z =
λ1

λs
≥ 1. (14)

Metric of the channel rank (how invertible a matrix is?)
z → 1: Well-conditioned matrix with almost equal
eigenvalues.
z >> 1: Ill-conditioned matrix (rank-deficient).
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Investigation of the standard condition number (SCN)

Ratio of the largest to the smallest eigenvalue

z =
λ1

λs
≥ 1. (14)

Metric of the channel rank (how invertible a matrix is?)
z → 1: Well-conditioned matrix with almost equal
eigenvalues.
z >> 1: Ill-conditioned matrix (rank-deficient).

Applications in the area of wireless communications
Quantifies the performance of linear detectors (ZF, MMSE)
Adaptive MIMO transmission/Adaptive decoding
Level of multipath activity
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Generic framework for the CDF of the SCN-part A

A1 Definition of the joint eigenvalue PDF

f (λ) = K |Φ(λ)| × |Ψ (λ)|
s∏

ℓ=1

ξ(λℓ). (15)
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Generic framework for the CDF of the SCN-part A

A1 Definition of the joint eigenvalue PDF

f (λ) = K |Φ(λ)| × |Ψ (λ)|
s∏

ℓ=1

ξ(λℓ). (15)

A2 Liebniz determinant formula (use all possible permutations
of the matrix elements)

|Φ(λ)| = |φj(λi)| =
∑

α

(−1)α
s∏

i=1

φαi (λi). (16)
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Generic framework for the CDF of the SCN-part A

A1 Definition of the joint eigenvalue PDF

f (λ) = K |Φ(λ)| × |Ψ (λ)|
s∏

ℓ=1

ξ(λℓ). (15)

A2 Liebniz determinant formula (use all possible permutations
of the matrix elements)

|Φ(λ)| = |φj(λi)| =
∑

α

(−1)α
s∏

i=1

φαi (λi). (16)

A3 Joint eigenvalue PDF becomes

f (λ) = K
∑

α

(−1)α|ψj(λi)φαi (λi)ξ(λi)|, 1 ≤ i , j ≤ s. (17)
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Generic framework for the CDF of the SCN-part B

B1 Integral definition of the SCN CDF, Fz(x)

Fz(x) = Pr(z < x) =

∫ ∞

0

[ ∫ xλs

λ2

∫ xλs

λ3

· · ·
∫ xλs

λs

f (λ1, λ2, . . . , λs)

dλs−1 . . .dλ2dλ1

]

dλs. (18)
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Generic framework for the CDF of the SCN-part B

B1 Integral definition of the SCN CDF, Fz(x)

Fz(x) = Pr(z < x) =

∫ ∞

0

[ ∫ xλs

λ2

∫ xλs

λ3

· · ·
∫ xλs

λs

f (λ1, λ2, . . . , λs)

dλs−1 . . .dλ2dλ1

]

dλs. (18)

B2 Exploit the inherent symmetry of the joint eigenvalue PDF
to permute the multiple integral (s − 1) times

Fz(x) =
1

(s − 1)!

∫ ∞

0

∫ xλs

λs

∫ xλs

λs

· · ·
∫ xλs

λs

f (λ)dλ1 . . .dλs−1dλs

(19)
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Generic framework for the CDF of the SCN-part C

C1 After some crazy algebra, we end up with

Fz(x) = K
s∑

ℓ=1

∫ ∞

0

∣
∣
∣
∣
∣
∣





∫ xλs

λs

φi(u)ψj(u)ξ(u)du, i 6= ℓ

φi(λs)ψj(λs)ξ(λs), i = ℓ





∣
∣
∣
∣
∣
∣

dλs
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Generic framework for the CDF of the SCN-part C

C1 After some crazy algebra, we end up with

Fz(x) = K
s∑

ℓ=1

∫ ∞

0

∣
∣
∣
∣
∣
∣





∫ xλs

λs

φi(u)ψj(u)ξ(u)du, i 6= ℓ

φi(λs)ψj(λs)ξ(λs), i = ℓ





∣
∣
∣
∣
∣
∣

dλs

C2 Closed-form expressions for
∫ xλs
λs

φi(u)ψj(u)ξ(u)du

Eg. Uncorrelated central case:

γ(t − s + i + j − 1, xλs) − γ(t − s + i + j − 1, λs)
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Analytical evaluation of the generic framework

SCN CDF of an (8 × 3) MIMO system under uncorrelated
Rayleigh, semi-correlated Rayleigh (ρ = 0.6) and uncorre-
lated Ricean (Kr = 3 dB) fading.
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Analytical evaluation of the generic framework

SCN CDF of an (8 × 3) MIMO system under uncorrelated
Rayleigh, semi-correlated Rayleigh (ρ = 0.6) and uncorre-
lated Ricean (Kr = 3 dB) fading.
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Simulation results
SCN CDF of a (6 × 2) semi-correlated Rayleigh system against
the spatial correlation coefficient, ρ.
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Simulation results
SCN CDF of a (6 × 2) semi-correlated Rayleigh system against
the spatial correlation coefficient, ρ.
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Spatial correlation→ reduces the effective channel rank
(identical spatial characteristics of the impigning multipaths).
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Simulation results
SCN PDF of a (2 × 5) uncorrelated Ricean system against the
Ricean K -factor
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Simulation results
SCN PDF of a (2 × 5) uncorrelated Ricean system against the
Ricean K -factor
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As K gets larger the dynamic range of the SCN increases too→
excessive spatial correlation between the LoS rays’ phases.
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Conclusions

RMT is a powerful and tractable tool to statistically assess
the performance of MIMO systems
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Conclusions

RMT is a powerful and tractable tool to statistically assess
the performance of MIMO systems

General examples of the RMT usefulness in the MIMO con-
text
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Conclusions

RMT is a powerful and tractable tool to statistically assess
the performance of MIMO systems

General examples of the RMT usefulness in the MIMO con-
text

Generic framework for the condition number statistics of
three different classes of complex Wishart matrices (Un-
correlated/ Semi-correlated central and uncorrelated non-
central).
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Conclusions

RMT is a powerful and tractable tool to statistically assess
the performance of MIMO systems

General examples of the RMT usefulness in the MIMO con-
text

Generic framework for the condition number statistics of
three different classes of complex Wishart matrices (Un-
correlated/ Semi-correlated central and uncorrelated non-
central).

Validated via numerical integration for an arbitrary (Nr ×Nt)
MIMO system.
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Conclusions

RMT is a powerful and tractable tool to statistically assess
the performance of MIMO systems

General examples of the RMT usefulness in the MIMO con-
text

Generic framework for the condition number statistics of
three different classes of complex Wishart matrices (Un-
correlated/ Semi-correlated central and uncorrelated non-
central).

Validated via numerical integration for an arbitrary (Nr ×Nt)
MIMO system.

Implications of the model parameters (spatial correlation,
Ricean K -factor) on the condition number performance.
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Future work - Open problems

Application of RMT to cognitive radio characterization (e.g.
spectrum sensing schemes)

Extension of known RMT results from point-to-point MIMO
to multiuser scenarios

Design of practical adaptive subchannel selection algorithms
for performance enhancement of MIMO beamforming schemes

Performance analysis of MIMO systems assuming different
fading models (e.g. Nakagami-m, Weibull...)

Consider the impact of practical impairments (e.g. channel
estimation error and feedback delay)
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Thank you for your attention!

Technische Universit ät München Institute for Circuit Theory and Signal Processing


