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Our world today (already old)
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Web 2.0 content

• 20h of video content uploaded 
every minute at YouTube 
(2009) 

• 3,024,780,142 photos in 
Flickr @ 11:52, 12 Nov 2008

• 2 million geotagged photos 
uploaded each month (2008)

Facebook:
• More than 250 million active 

users
• More than 120 million users 

log on to Facebook at least 
once each day

• More than 1 billion photos 
uploaded to the site each 
month
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Tags everywhere
Search, Describe content, Extract 
knowledge
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Very low precision
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Very low recall



Thessaloniki, Feb 3CERTH-ITI Seminars

Can we improve things?

By combining information from many 
photos - tags, it seems that we can

Stable patterns 
in tagging systems over time 
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Stable tagging patterns
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What else we can do?

  Tags that are “representative” 
for a geographical area

• 1. Clustering of photos
 K-means, based on their 

location [Kennedy07]

• 2. Rank each cluster’s tags

• 3. Get tags above a certain 
threshold

Representative tags for San 
Francisco [Kennedy07]

Contribute to our 
understanding of 

the world
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Collective Intelligence, PeopleWeb, 
Croudsourcing, Wisdom of crouds ...

Collective Intelligence is the Intelligence which emerges 
from the collaboration, competition and coordination 

among individuals.

...an Intelligence greater than the sum of the individuals’ 
intelligence
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CI and Web 2.0?
• Analyze user-generated 

content, such as tags that 
are manually assigned to 
photos, and its relation to 
context over time, space and 
social connectivity

• Sources 

– Tags

– Content

– Social info

– Time, Location

– Other sources (e.g. 
Wikipedia)

http://www.iyouit.eu
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Web 2.0 (Collective)

Mobile 
Networks /

High 
Performance 
Computing

Content Analysis

Semantics

(Intelligence)

Why today?
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A “simple” example

Uses the GPS in cellular phones 
to gather traffic information, 
process it, and distribute it 
back to the phones in real 
time

• online, real-time data 
processing

• privacy-preservation

• data efficiency, i.e. not 
requiring excessive cellular 
network Mobile Century Project: 

http://traffic.berkeley.edu/mobilecentury.html
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Image search - Tourism
• Linguistic 

processing of 
semi-
structured 
sources
– Wikipedia, 

Geoplanet
• Statistical 

analysis for 
ranking
– User Queries
– Flickr tags
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• Problem formulation: Having identified a tag x as representative of 

a cluster, compute a set of photos that are representative for that tag

Generating photo summaries for geographic objects in [Kennedy07]

Generating photo summaries

Number of users

Visual coherence

Cluster connectivity 

Variability in dates
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“Oxford Geek nights”
“Movie premiere Italy”
“Exhibition gallery paris”

DATASET: Divide the 
earth’s surface into square 
tiles of 200m2
70000 geographic tiles
220000 geotagged photos 
from Flickr
After preprocessing, 
73000 photos were 
assigned to clusters
Manually labeling of 700 
clusters

The most commonly 
identified event 

(single day covered 
by a single 

photographer)

Sample photo summaries of 
events [Quack08]
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Auto annotation & geo-location

[Quack08]
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EpiCollect: Science - epidemiology 
example

   A scientist or member of the 
public collects and records data, 
photos and videos then sends 
this information to a central 
web-based database 

• e.g. to document the presence 
of an animal or plant species 
that are “representative” for a 
geographical area

• Location information – maps

• Citizen scientists

EpiCollect: Linking 
Smartphones to Web 
Applications for Epidemiology, 
Ecology and Community Data 
Collection, David M. 
Aanensen, Derek M. Huntley, 
Edward J. Feil, Fada'a al-Own, 
Brian G. Spratt
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Research Fields and Issues

• Statistical analysis, machine learning, data mining, 
pattern recognition, social network analysis

• Clustering

• Graph theory

• Image, text, video analysis

• Information extraction

• Fusion techniques

• Trust, security, privacy

• Performance, scalability
 speed, storage, power, grids, clouds
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Clustering for Social Media
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Clustering Approaches
• Tag-Based
• Content-Based
• Time-based
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Proposed system
Clustering System

Social Media 
Sharing Site

Upload media 
resources

Add metadata

Data Crawling

Data Preprocessing

Repository

Clustering Module

RSS 
XML 
RDF

Data Representa4on

WordNetWikipedia

External Resources

clusters

User 

Tag

 Resource
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Tag-based Clustering (I)
• 1. Vector data model 
• Assume n resources and d attribute-tags

• d: a representative set of tags
• A resource representation in vector space (sf) is 
based on semantic similarity and tag co-
occurrence between the resource’s tags and the 
attribute-tags

• A resource ri is represented by a d-dimensional 
vector ri = (sf1,sf2,…,sfd)

• All resources can be represented by an n x d 
matrix
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Tag-based Clustering (II)
• 2. Clustering on n (resources, r) x d (attributes) matrix 

(K-means, Hierarchical, COBWEB)

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

sea road rocks sports

sf
sf calculation

Semantic 
similarity

Tag co-
occurrence

WordNet

Tag 
attributes

Tag attributes
Tennis, Roland 
Garros 2005

Social 
Tagging 
System

r = (0.03, 0.2, 0, 0.9)
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Tag-based Clustering - 
Experimental Results
• Dataset: 3000 images downloaded from Flickr

• Meaningful subdomains of roadside:

• Different clusters for the ambiguous tag wave, rock:

buildings, roof, street, road cars, vehicles, race people, street, festival

wave, sea, ocean wave, person, hand rocks, stone, rockyside rock, music, band
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• After performing tag-based clustering, low-level 
features of resources are used for cluster refinement

• Outlier Detection (mahalanobis distance)
• For each resource the following visual descriptors are 

extracted:

 Scalable Color, SC
 Color Structure, CS
 Color Layout, CL
 Edge Histogram, EH
 Homogenous Texture, HT

• A single image feature vector per each resource is 
produced, encompassing all descriptors normalized in 
[0,1]

• Feature extraction and distances between image feature 
vectors are according to MPEG-7 XM.

Tag & Content-based Clustering



Thessaloniki, Feb 3CERTH-ITI Seminars

Evaluation Method

• Definition: Cluster Topic, CT, are the tags that have frequency in 

cluster’s resources annotation over a threshold τ. 

• Evaluation Metrics

• Precision

• Recall 

• F-Measure
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Tag & Content-based Clustering – 
Experimental Results
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Dataset: 10000 images (with their 
tags) downloaded from Flickr

Evaluation: Manual annotation and 
use of F-Measure.
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Experimental Results (II)

Attributes Assignment to k=8 clusters,

W : weighting factor of semantic similarity against 
similarity derived from tag co-occurrence
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Why consider time?

• Motivation

Events, Trends, Changing of user interests

Users Tagging Behavior changes over time

Time is a fundamental dimension in analysis of 
users and tags in a social tagging system
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Many times, a user’s targeted interest is 
hidden in the general tagging activity….

Accessor
ies, bags, 
fashion, 

Cars, football, 
holidays, horses, 
sea, turkey, fashion

New York, hat, 
trousers, 

fashion, Gucci

animals, elephants, 
nature sea, turkey, 

bags

hats, 
Gucci 

fashion, 
jeans, NY

User 1 User 2 User 3

fashionweek, 
fashion, silk,  

wool
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The basic idea

Step 4: Combination of semantic and 
time information
(ui,tj)= SemSim(ui,tj) * InnerProduct(u i,tj)

WordNet

Step 1: Representation

Step 2: Focus on 
contents 

(tags semantics) 

Step 3: Focus on 
time locality



Thessaloniki, Feb 3CERTH-ITI Seminars

Jan 2000 Feb 2000Mar 2000Apr 2000May 2000Jun 2000Jul 2000Aug 2000Sep 2000
0

20

40

60

80

100

120

time

Ta
gg

in
g 
A
ct
iv
ity

User 1

An example

Jan 2000 Feb 2000 Mar 2000 Apr 2000 May 2000 Jun 2000 Jul 2000 Aug 2000 Sep 2000
0

20

40

60

80

100

120

140

160

180

200
User2

time

Ta
gg

ing
 A

cti
vit

y

Jan 2000 Feb 2000 Mar 2000 Apr 2000 May 2000 Jun 2000 Jul 2000 Aug 2000 Sep 2000
0

20

40

60

80

100

120

140

160

180

200
User3

time

Ta
gg

ing
 A

cti
vit

y

(ui,tj)= SemSim(ui,tj) * InnerProduct(u i,tj)

fashion & related fashion & related fashion & related



Thessaloniki, Feb 3CERTH-ITI Seminars

Time-aware user/tags clusters 
on Flickr (I)

Cluster of 
users 
interested in 
Olympics and 
related tags

Cluster of users 
interested 
regularly in 
weddings  and 
related tags
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Time-aware user/tags clusters 
on Flickr (II)

Olympics –related tags

Ancient Greece –related tags

Tags distribution in a 
cluster

User1’ s tags 
distribution

User2’ s tags 
distribution
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Cluster evolution (timestamp 1)

Timestamp 1: June 2008
Timestamp 2: July 2008
Timestamp 3: August 2008
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Cluster evolution (timestamp 2)

Timestamp 1: June 2008
Timestamp 2: July 2008
Timestamp 3: August 2008
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Cluster evolution (timestamp 3)

Timestamp 1: June 2008
Timestamp 2: July 2008
Timestamp 3: August 2008
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Social Media “teacher” of the 
machine
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Exploiting clustering for machine learning

sand, wave, rock, 
sky

sea, sand

sand, sky person, sand, 
wave, see

Image 
analysis

Social 
information

Tagged images

Region-detail annotated 
images

Machine 
Learning

Object 
Detectors 

+

Objective: Develop a framework able to create strongly annotated training 
samples from weakly annotated images Problems:

 Object detection schemes require 
region-detail annotations 

 Manual annotation is laborious and 
time consuming

Solutions:
 Exploit user tagged images from social sites 

like flickr
 Combine techniques operating on tag and 

visual information space

[Chatzilari09] 
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Step 1: Process image tag information in order to acquire
image groups each one emphasizing on a particular object.

Step 2: Pick an image group so as its most 
frequent tag to conceptually relate with the 
object of interest.

Step 3: Segment all 
images in the selected 
image group into regions.

Step 4: Extract the visual 
features of these regions.

Step 5: Perform feature-
based clustering so as to 
create groups of similar 
regions

Step 6: Use the visual features 
extracted from the regions
belonging to the most populated 
cluster, to train a machine
learning-based object detector.
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Tag-based processing

SEMSOC, vector space model where 
each image is projected onto a space 

defined by the most prominent tags 

SEMSOC output example

Distribution of objects based 
on their frequency rank

Absolute difference between 1 st and 2nd most 
highly ranked objects increases as n increases

[Giannakidou08] 
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Segmentation & Visual 
Descriptors

• Segmentation
– K-means with connectivity constraint 

(KMCC) 
 [Mezaris et al., 2004]

• Visual Descriptors
– MPEG-7 standard

• Dominant Color , Color Layout, Color Structure, 
Scalable Color, Edge Histogram, Homogeneous 
Texture, Region Shape.

[Bober et al., 2001], [Manjunath et al., 2001].
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Region-based Clustering & Cluster 
Selection Region clustering

 Perform segmentation and visual feature extraction 
from all images in an image group (Identified by 
SEMSOC) 
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 Perform clustering based on 
visual features to gather 
together regions depicting the 
same object
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 Pick the most populated cluster as 
the one representing the most 
frequently appearing tag of the 
group
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Experimental Results – Cluster Selection

Setting:
• Visualise the way regions are distributed 

among clusters
• Use shape-code (squares) to indicate the 

regions of interest and color-code to indicate 
a cluster’s rank (largest cluster: red)

• Ideally all squares should be painted red and 
all dots should be painted differently

Goal:
• Validate our theoretical claim that the most 

populated cluster contains the majority of 
regions depicting the object of interest

Conclusions:
• Our claim is valid in 5 (i.e., sky, sea, person, 

vegetation, rock) and not valid in 2 (i.e., 
boat, sand) cases Vegetation in magnification
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Experimental Results - 
Man. vs Autom. trained object detectors

Observations:
• Performance lower than 

manually trained 
detectors

• Consistent performance 
improvement as the 
dataset size increases
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Experimental Results – MSRC Dataset (21 
objects)

Observations:
• In 5 cases the objects were too 

diversiform to be described by 
the employed feature space (not 
even the manual annotations 
performed well)

• In 5 cases the annotation we got 
from Flickr groups were not 
appropriate

• In 6 cases, our method has 
failed to select the appropriate 
cluster

• In 5 cases our method worked 
well
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Experimental Results - 
MSRC vs Flickr groups
 Target object: Tree

Tree object

Good example: Semantic objects 
are correctly assigned to clusters 
and the most-populated cluster 
corresponds to the target object)
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Experimental Results - 
MSRC vs Flickr groups
Target Object: Sky

Sky object

Bad example: Sky regions are split in 
many clusters and the most populated 
cluster contains noise regions
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Community Detection
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Community Detection in Complex 
Networks
• Community Detection: The Problem
• Global vs. Local Community Detection
• Bridge Bounding
• Conclusions - Future Work



Thessaloniki, Feb 3CERTH-ITI Seminars

communities context ...

•  typically ... communities are defined with 
reference to some graph (network) which 
represents a set of entities / objects (nodes) and 
their relations (edges).

...  even when there is no explicit graph, one can 
infer it, e.g.:

feature vectors  distances threshold 
application  graph

•  Given a graph, a community is loosely defined as a 
set of nodes that are more densely connected to 
each other than to the rest of the graph vertices.
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a simple example ...

•  extremely profound 
community structure.

•  key-concepts : within-
community nodes, intra-
community edges, inter-
community edges.

•  rarely appearing in real 
systems.

inter-community edge

intra-community edge

Definition of communities is 
heavily dependent on graph 
properties and subgraphs 

discovery
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Global vs. Local

• Global: Process the whole graph to derive 
a partition into communities
+ Abundant research
+ Good results (community quality, algorithm 

efficiency)
 Not practical for huge graphs or for real-time 

applications

• Local: Incremental process of the graph 
and output communities (streaming)
 Relatively little research
 Great potential for demanding applications
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Bridge Bounding
Algorithm
• Start a community with 

a seed node
• Add neighbouring nodes 

as long as they are connected 
by edges that are not 
inter-community (“bridges”).

• Stop when it is not possible 
to add any more nodes.

Basic success factor:
Edge Bridge-ness: The property of an edge to lie between 
two communities.
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Bridge Bounding – Toy Example

Local bridging of an edge

s, t: endpoints of edge
N(s), N(t): neighbourhoods of s, t
d(s), d(t): degrees of s, t
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Bridge Bounding - Problems

• Local bridging not suitable for scale-free 
networks 

• Solution (partial) 2nd order local bridging.

BL as low as 0.05 leaves 8% of edges 
as non-bridges.

BL = 0.17 leaves just 1% of edges as non-bridges.
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Experiments on Synthetic 
Community Networks
• Synthetic networks according to method of 

Newman and Girvan.

Change complexity of underlying 
communities.

Change relative sizes of underlying 
communities.
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LYCOS iQ Tag Network

Computers:
A densely interconnected 
community

History:
A star-shaped 
community
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Future Work for Community 
Detection
• Investigate label propagation techniques.

• Application on external memory graphs.

• Possibilities for incremental community detection.
• Application on large dynamic networks (e.g. Social 

Tagging Systems)

• Applications on different domains:
• Hybrid image clustering (use of both visual and tag 

features)

• Domain-specific clustering, e.g. Points-Of-Interest in 
travel applications.
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WeKnowIt and CI
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Personal Intelligence
Profile of contributor
>> What to send where, 
e.g. location, age, 
picture

Buncefield 2005

Social Intelligence
Trust and feedback
>> Determine trustworthiness 
and hub-structures by SNA

Mass Intelligence
Many contributors
>> Extraction of trends about 
the scale of the incident

Media Intelligence

Picture arrives at 
emergency response
>> Automatic detection 
of a fire event

Organizational Intelligence
The right knowledge to 
the right people at the 
right time

>> Whom (fire-fighters, 
ambulances,…) to 
inform about what

Buncefield 2005
Collective intelligence - the full picture emerges
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Further Issues
• Not all data always available (e.g. User queries, fb)

• Long tail is forgotten (e.g. flu trends in 3 rd world 
countries)

• “More data, less analysis”,....

• Applications and commercialization

• Efficiency of semantics and analysis

• Real integration
 not just sum of different analysis
 formal framework and approach
 representation

• User interaction – Interfaces
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Thank you!
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