

CeRTH Informatics & Telematics Institute

ITI Presentation

Activity related recognition in Aml environments

Mr. Anastasios Drosou

(Dr. Tzovaras' Group)

CeRTH

Outline

Introduction

Activity Detection

Activity related recognition

- Human Tracking
- Reaching Part
- Grasping Part
- Classifiers
- Results
- Conclusions

CeRTH

Definition of Biometrics

"Biometrics measure the unique physical or behavioural characteristics of individuals as a means to recognize or authenticate their identity."

 \rightarrow Establish someone's identity based on who he/she is rather than on what he/she poseses (e.g. ID cards,) or what he/she remembers (e.g. password).

- <u>Verification problem</u>: *Is the user Mr. X? 1:1 comparison.*
- Identification: Who is the user? 1:many comparison.

CeRTH

Types of Biometrics

	Description	Types	Pros	Cons
Physiological Biometrics	A physical attribute unique to a person	Fingerprint, palm, iris, geometry, retina, facial characteristics, etc.	High Accuracy.	Obtrusive, Uncomfortable, Easy to spoof, Intolerant of changes over time.
Behavioural Biometrics	Traits that are learned or acquired from a person	Facial Dynamics, Gait, Voice, Key-stroke Patterns, Activity related signals, etc.	Unobtrusive, Difficult to spoof, Continuous & on-the-move authentication, Rare changes.	Lower accuracy, yet

CeRTH

Motivation

We claim **recognition potential** because:

- 1. Personal behavioural patterns in everyday movements (i.e. gait, grimaces, standard movements, etc)
- 2. Physiology of the human body (height, arm length, finger lengths, etc.)
- 3. Bodymetric restrictions (i.e. impairments, etc.)
- 4. Minimum Jerk Model (Flash & Hogan)
- 5. Minimum Torque Change Model (Uno, Kawato & Suzuki)
- 6. End state comfort effect (Rosenbaum et al.)

7.

CeRTH

Case study: Prehension biometrics

- Response of the person to specific stimuli.
- Work related, everyday activities with no special protocol.
- Continuous authentication/recognition.
- Multi-activity concept for human authentication.
- 2 stages of a prehension movement:
 i. a fast initial movement (reaching)
 ii. a slow approach movement (grasping)

θ

CeRTH

System-Level Criteria

Characteristics of a biometric that must be present in order to use the system for authentication purposes

Universality

- Universality: Every person should possess this characteristic
- In practice, this may not be the case
- Otherwise, population of non-universality must be small < 1%

Uniqueness

- Uniqueness: No two individuals possess the same characteristic.
- Genotypical Genetically linked (e.g. identical twins will have same biometric)
- Phenotypical Non-genetically linked, different perhaps even on same individual
- Establishing uniqueness is difficult to prove analytically
- May be unique, but "uniqueness" must be distinguishable
- Permanence
 - Permanence: The characteristic does not change in time, that is, it is time invariant
 - At best this is an approximation
 - Degree of permanence has a major impact on the system design and long term operation of biometrics. (e.g. enrollment, adaptive matching design, etc.)
 - Long vs. short-term stability

Collectability - Measurability

- Collectability: The characteristic can be quantitatively measured.
- In practice, the biometric collection must be:
 - Non-intrusive
 - Reliable and robust
 - Cost effective for a given application
- Measurability: The trait can be measured with simple technical instruments
- Performance accuracy, speed, and robustness of technology used
- Circumvention The trait is easily measured with minimal discomfort

....then it can potentially serve as a biometric for a given application.

CeRTH

Outline

- Introduction
- Activity Detection
- Activity related recognition
 - Human Tracking
 - Reaching Part
 - Grasping Part
- Classifiers
- Results
- Conclusions

CeRTH

Motion Templates

- Motion Energy Image (MEI)
 - Describes the motion energy for a given view of action.
 - Binary image.

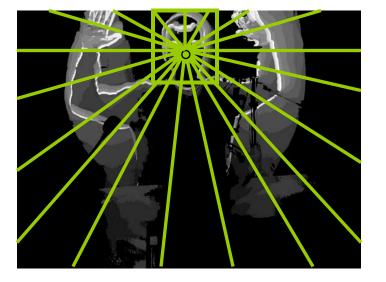
$$E_T(x, y, t) = \bigcup_{i=0}^{\tau-1} D(x, y, t-i)$$

- Motion History Image (MHI)
 - Intensity image.

$$MHI_T(x, y, t) = \begin{cases} \tau & \text{if } D(x, y, t) = 1\\ max(0, MHI_T(x, y, t-1) - 1) & \text{otherwise} \end{cases}$$

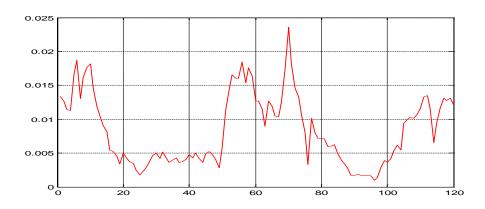
CeRTH

Radon Transforms (I)



• Radial Integration Transform (RIT):

- 1. Face detection
- 2. Centre of Face
- 3. RIT Extraction



 $RIT(t\Delta\theta) = \frac{1}{J} \sum_{j=1}^{J} MHI(r_0 + j\Delta u \operatorname{co} (t\Delta\theta), y_0 + j\Delta u \sin t\Delta\theta))$

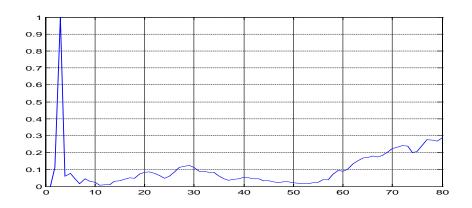
for t = 1, ..., T with $T = 360^{\circ} / \Delta \theta$

Imperial College London CeRTH ITI

Radon Transforms (II)

• Circular Integration Transform (CIT):

- 1. Face detection
- 2. Centre of Face
- 3. CIT Extraction



 $CIT(t\Delta\rho) = \frac{1}{T} \sum_{t=1}^{I} MHI(x_0 + k\Delta\rho\cos(t\Delta\theta), y_0 + k\Delta\rho\sin(t\Delta\theta))$

for k = 1, ..., K with $T = 360^{\circ} / \Delta \theta$

CeRTH

Similarity Metrics

• Euclidian Distance

$$D_E(\mathbf{x}, \mathbf{y}) = \sqrt{(\mathbf{x} - \mathbf{y})^2} = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$$

• Correlation Factor - Coefficients

$$corr(x, y) = \rho_{x,y} = \frac{cov(x, y)}{\sigma_x \sigma_y} = \frac{E((x - \mu_x)(y - \mu_y))}{\sigma_x \sigma_y}$$

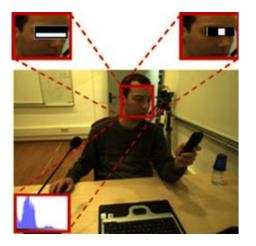
CeRTH

Human Body Tracking

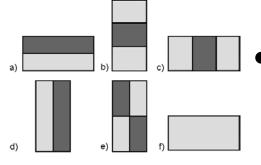
- Camera based tracking:
 - Custom ITI Tracker
 - OpenNI Library Tracker
- Ascension Technology Corp. Magnetic Tracker (ground truth).
- Cyberglove[®] finger tracking.

CeRTH

Face Detection & Tracking



- Viola & Jones's real-time face detection method:
 - T weak classifiers form a strong one,
 - integral Image,
 - haar like features (subtracting the pixel values in the dark from the bright rectangles),
 - AdaBoost algorithm.



- Mean Shift algorithm:
 - Bases on spatial and colour information between sequential frames.
 - Bhattacharyya distance

CeRTH

Background Extraction – Skin Colour Filtering – Motion Detection

- Location of the face
- Disparity images (stereoscopic Camera)

$$D(I) = S(I) \cap B(I)$$

- No training required.
- Computational inexpensive.
- Simple approach explicit rules.
- Skin cluster boundaries of RGB & HSV.

$$M_t(I) \equiv D_1(I) - D_2(I)$$

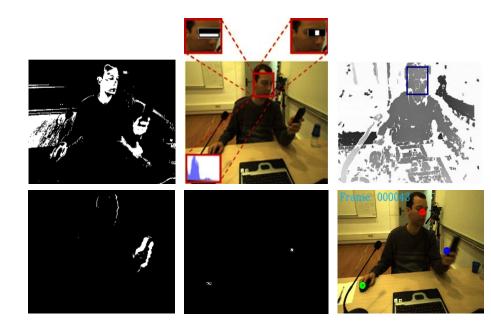
$$MHI_{t}(x, y) = \begin{cases} 2, & \text{if } M_{t}(I(x, y)) = 1\\ max(0, MHI_{t-1}(x, y) - 1), & \text{otherwise} \end{cases}$$



CeRTH

ITI

Movement's Tracking



IXNHAATIEH KINHEHE XPHETH

CeRTH

ITI Body Tracker Evaluation

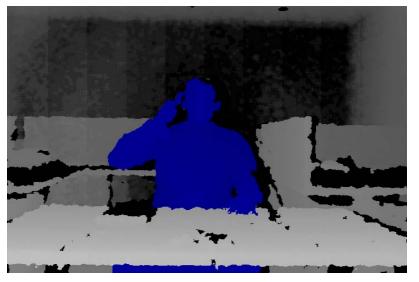
150 145 **Magnetic Tracker** 140 Camera Tracker X-axis 135 130 125 120 115 2 Time elapsed Phone is On→ Phone reached the Ear Phone left the Ear -0.4 -0.6 -0.8 Y-axis -1 -1.4 -1.6 -1.8 – 0 1 2 3 4 5 6 Time elapsed 15 10 Z -axis 0 -5∟ 0 5 2 3 4 6 Time elapsed

Magnetic Tracker vS. Camera Tracker

ITI Presentation, Thessaloniki 16 March 2011

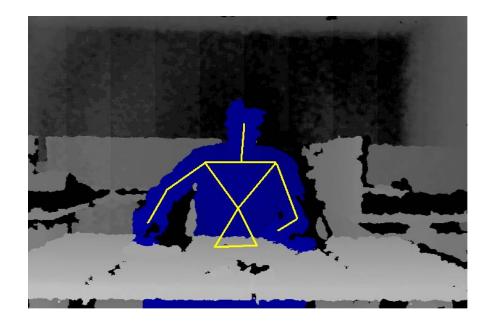
CeRTH

Primesense[®] TOF Sensor - OpenNI Open Source Library



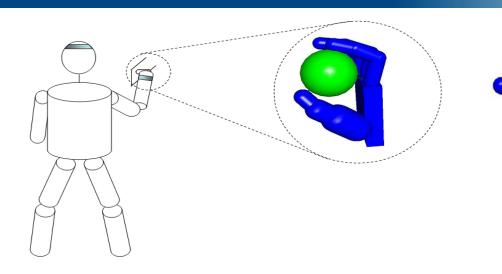
- Trained machine learning algorithm by millions of manually tagged images of people in different poses.
- OpenNI manages to adjust the most appropriate skeleton model to each human body in terms of size and pose.

- Real time & accurate.
- Human body form recognition and segmentation ecognizes the human
- Human body tracking by simultaneousl tracking of 48 essential points of the human body in the 3D space.

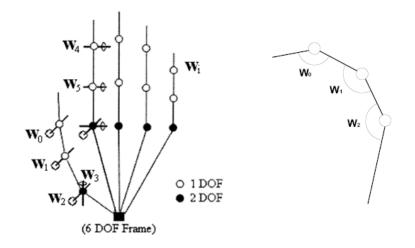


Cyberglove® finger tracker

CeRTH



- 4 DoF for each finger
- 3 phalanxes for each finger
- 3 DoF for the orientation of the whole palm
- Time-stamped Data



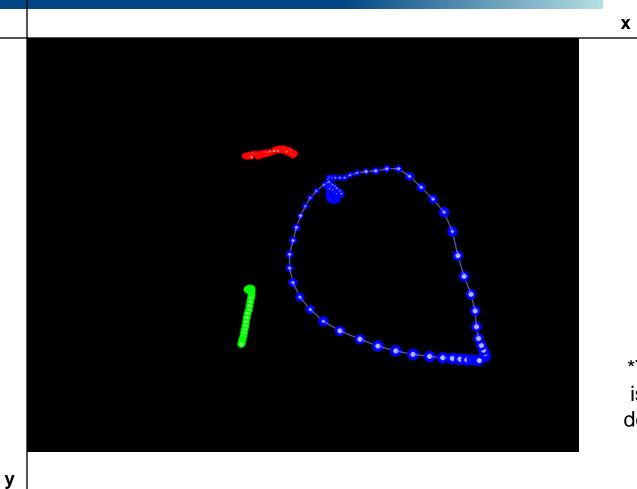
CeRTH

Outline

- Introduction
- Activity Detection
- Activity related recognition
 - Human Tracking
 - Reaching Part
 - Grasping Part
- Classifiers
- Results
- Conclusions

CeRTH

Feature Extraction (I)



HeadRight HandLeft Hand

*The diameter of the dots is anti proportional to the depth of the tracked point.

CeRTH

T

Phone Conversation Trajectories

Subject 1 Subject 2 Subject 3 1 2

CeRTH

ITI

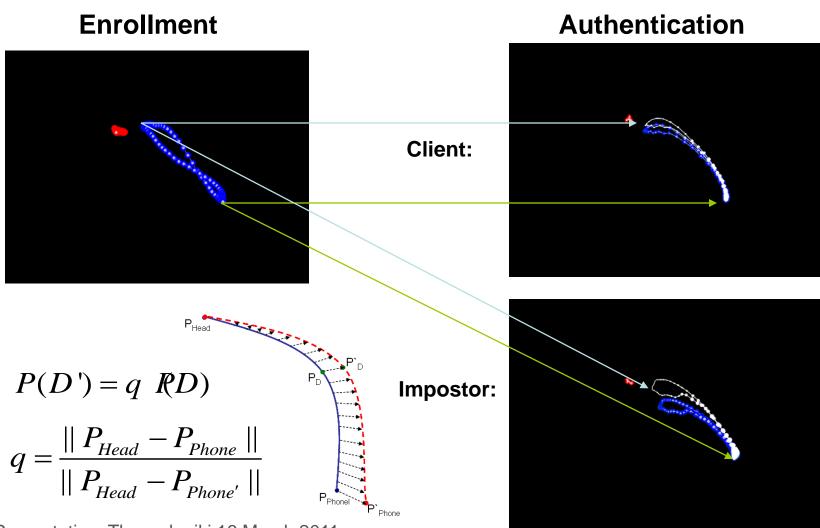
Office Panel Trajectories

Subject 1 Subject 2 Subject 3 1 2

CeRTH

ITI

Warping the trajectory



CeRTH

Feature Extraction (I)

 Exact location of the head/hand 3D position, at time t (timestamp tracking).

$$v_{x,y,z} = \frac{ds_{x,y,z}}{dt} \qquad a_{x,y,z} = \frac{dv_{x,y,z}}{dt}$$

Dynamic Spatial Cost

$$S_{p}(t) = S_{p}(t-1) + \sqrt{(x_{t} - x_{(t-1)})^{2} + (y_{t} - y_{(t-1)})^{2} + (z_{t} - z_{(t-1)})^{2}}$$

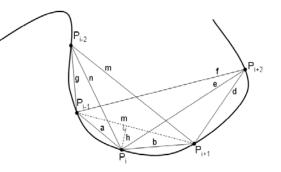
CeRTH

Feature Extraction (II)

Curvature - Derivative

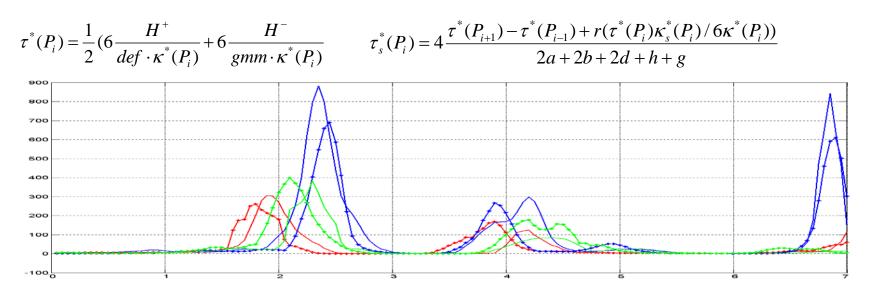
$$\kappa^*(P_i) = 4 \frac{\sqrt{\hat{s(s-a)(s-b)(s-c)}}}{abc}$$

$$\kappa_s^*(P_i) = 3 \frac{\kappa^*(P_{i+1}) - \kappa^*(P_{i-1})}{2a + 2b + d + g}$$



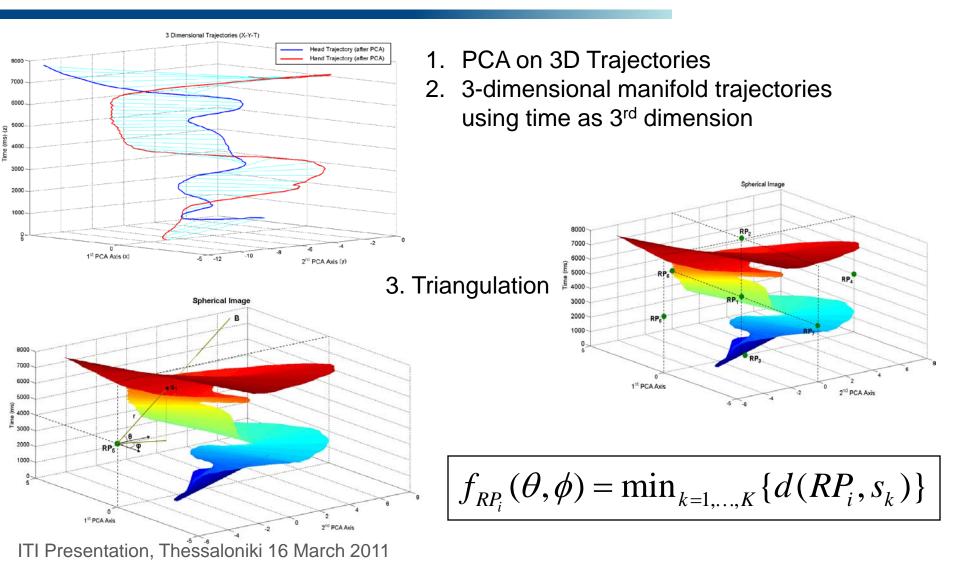
Torsion

Derivative

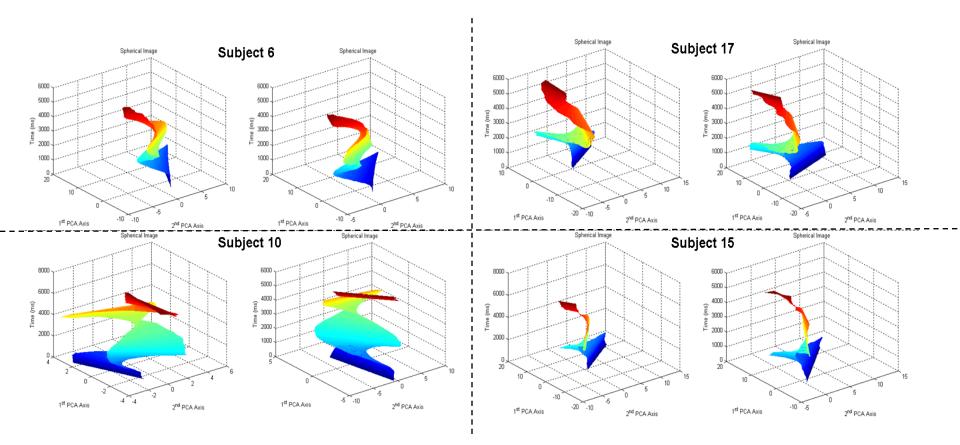


CeRTH

Spatiotemporal Activity Surface



Intra-similarity vS. Inter-variance of AS



ITI Presentation, Thessaloniki 16 March 2011

Imperial College

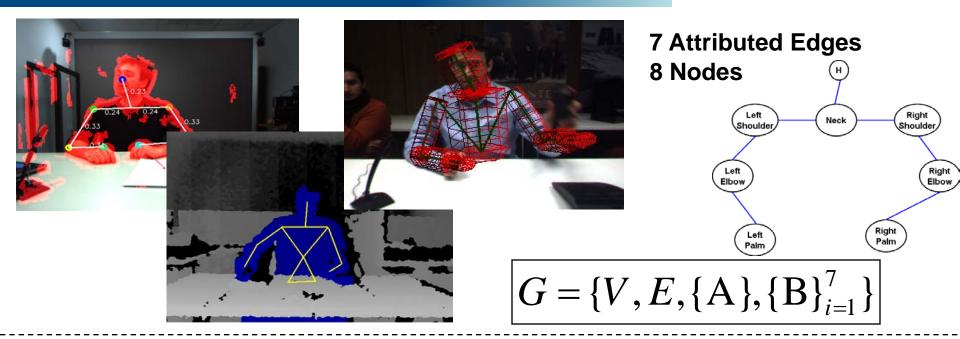
London

CeRTH

T

CeRTH

- Static Anthropometric Attributed Graph Matching



Supports:

- Full-graph matching (n`=n)
- Sub-graph matching (n`>n)

(AGM) problem:

$$B_{j} = P_{0}B'P_{0}^{T}(+\varepsilon M_{j})$$

$$\min_{p} \left(\sum_{j=1}^{s} W_{j+r} \parallel B_{j} - PB'_{j} \parallel^{q} \right)$$

CeRTH

Confidence Factor – Ergonomy

$$f_q = 1 - \frac{N_{missHead} + N_{missRHand} + N_{missLHand}}{3N_{frames}}$$

$$f_q = b \cdot f_q$$

$$heterosphere is convenient zere is c$$

CeRTH

Outline

- Introduction
- Activity Detection
- Activity related recognition
 - Human Tracking
 - Reaching Part

- Grasping Part

- Classifiers
- Results
- Conclusions

CeRTH

Feature Extraction

$$\overrightarrow{F_a} = \{ \overrightarrow{\theta_0}, \overrightarrow{\theta_1}, \dots, \overrightarrow{\theta_{22}} \}$$

 Angle between the phalanxes of each finger, at time t (timestamp tracking).

$$\omega_{\theta} = \frac{d\theta}{dt} \qquad \qquad a_{\theta} = \frac{d\omega}{dt} = \frac{d^{2}\theta}{dt^{2}}$$

• Dynamic Travel Cost

$$V_{j}(a_{j}(t),T_{j}) = (\frac{k_{j}a_{j}}{r})(1 + \frac{[T_{j} - T_{j}^{*}(a_{j})]^{2}}{s^{2}})$$

The cost of moving joint j through an angle of size in the given time $T_{j}^{*}(a_{j}(t)) = k_{j}ln(a_{j}+1), k_{j} \ge 0$
Joint's optimal time

CeRTH

ITI

Dynamic Time Warping (DTW) Classifier

- Based on dynamic Programming
- No training required
- Simple Implementation
- Fast
- The problem of finding the optimal warping path can be reduced to finding this sequence of nodes $(x_k; y_k)$, which minimizes $D(x_k; y_k)$ along the complete path.
- The main aim is to find the path for which the least cost is associated.

$$y_{1}(t)$$
Area size
$$y_{2}(t) \quad S_{c} = \sum_{i=1}^{L} \sum_{j=1}^{L} V(p_{i}, q_{j})$$

$$D(x_{k}, y_{k}) = D(x_{(k-1)}, y_{(k-1)}) + c(x_{k}, y_{k}) = \sum_{m=1}^{k} c(x_{m}, y_{m})$$

Total dissimilarity

ŀ

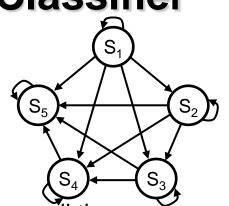
 $D_M = S_c \cdot D_{min}(L,L)$

CeRTH

ITI

Hidden Markov Model (HMM) Classifier

- Fully connected, left-to-right, five-state (N=5) HMM.
- The triplet: $\lambda = \{\pi_j, \alpha_{ij}, b_j\}$



- π_j is the probability of the jth state being the first state among all the trajectories,
- a_{ii} is the probability of the jth state occurring immediately after the ith state,
- b_i denotes the PDF of the jth state.
- The observational data from each state of the HMM are generated according to a PDF dependent on the instant of t^{th} state, $b_i(O_t)$.
- Given HMMs for the *L* enrolled subjects and the new trajectory vectors, we assign user label *m* as the HMM that maximizes the likelihood (ML principle).

CeRTH

Spherical Harmonics

$$\int_{1}^{2} \frac{1}{4\pi} \frac{1}{(l-m)!} P_{l}^{|m|} \cos(\theta) (\cos(m\phi) + isin(m\phi))$$

Spherical Harmonics series

$$\int_{1}^{2} \frac{1}{4\pi} \frac{1}{(l-m)!} P_{l}^{|m|} \cos(\theta) (\cos(m\phi) + isin(m\phi))$$

Spherical Harmonics series

$$\int_{1}^{2} \frac{1}{4\pi} \frac{1}{(l+m)!} P_{l}^{|m|} \cos(\theta) (\cos(m\phi) + isin(m\phi))$$

Spherical Harmonics coeffs.
Rotational Invariance: $c_{l}^{*} = \sum_{m=-K_{l}}^{K_{l}} c_{l}^{m}$
Z-Normalization: $c_{l}^{z} = \frac{c_{l}^{*} - \mu_{y}}{\sigma_{y}}$
Fusion among Reference Points: $S_{tot} = \sum_{j=1}^{N} w_{j}S_{j} = w_{1}S_{1} + w_{2}S_{2} + ... + w_{N}S_{N}$
ITI Presentation, Thessaloniki 16 March 2011

CeRTH

Database

ACTIBIO dataset (Aml indoor environment):

- 29 Subjects,
- 2 Time sessions 8 repetitions in total,
- Annotated frame sequences,
- 5 cameras in total:
 - 1 stereo camera (BumblebeeXB3 Point Grey Inc),
 - 2 usb cameras (Lateral-Zenithal)

CeRTH

Outline

- Introduction
- Activity Detection
- Activity related recognition
 - Human Tracking
 - Reaching Part
 - Grasping Part
- Classifiers
- Results
- Conclusions

CeRTH

ITI

Activity Detection Results

Events	Phone	Panel	Mic. Panel	Drink	Hands Up
Phone	93.1%	0%	0%	6.9%	0%
Panel	0%	89.7%	10.3%	0%	0%
Mic. Panel	0%	3.44%	3.44%	93.1%	100%
Drink	0%	10.3%	86.2%	3.44%	0%

CeRTH

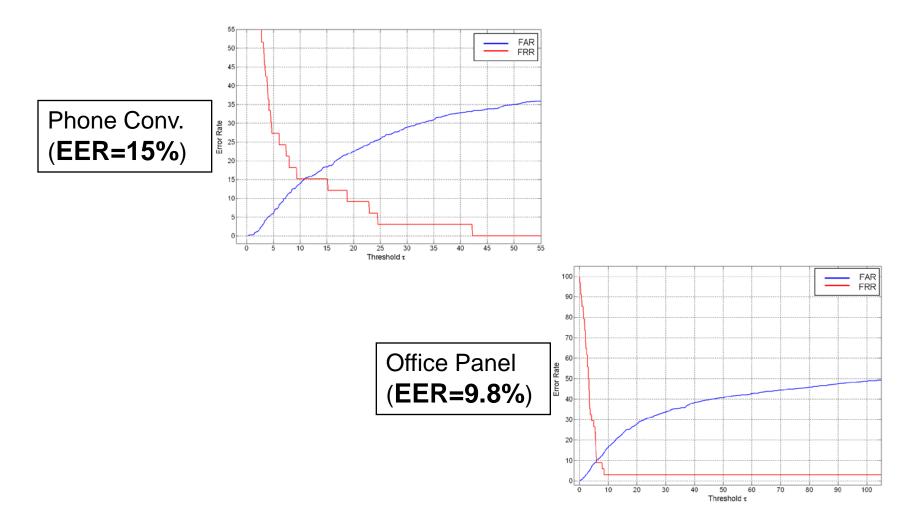
Tracking Results

Subject's No.	Confidence Score	Subject's No.	Confidence Score
Subject 1	0.835227	Subject 3	0.818681
Subject 3	0.937500	Subject 4	0.846774
Subject 5	0.933333	Subject 6	0.927778
	•••		
Subject 27	0.935897	Subject 28	0.720588
Subject 29	0.866667		

CeRTH

ITI

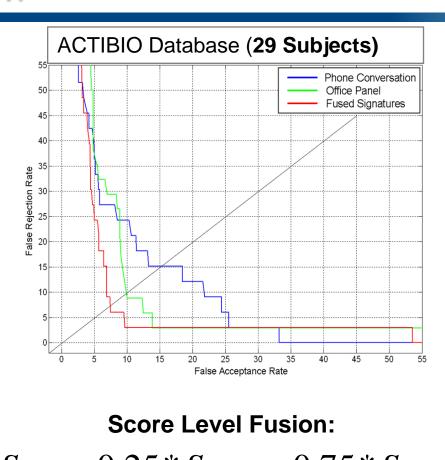
Authentication HMM Results



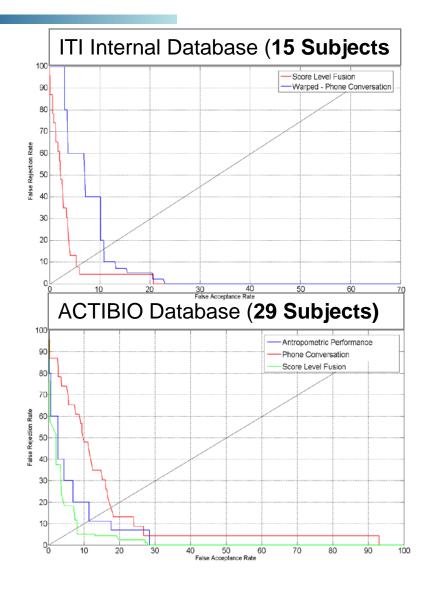
CeRTH

IT

Authentication Performance



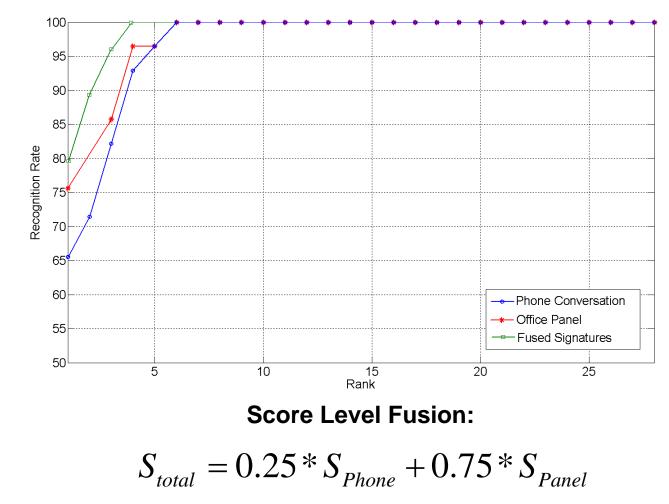
 $S_{total} = 0.25 * S_{Phone} + 0.75 * S_{Panel}$



CeRTH

IT

Recognition Performance (HMM)

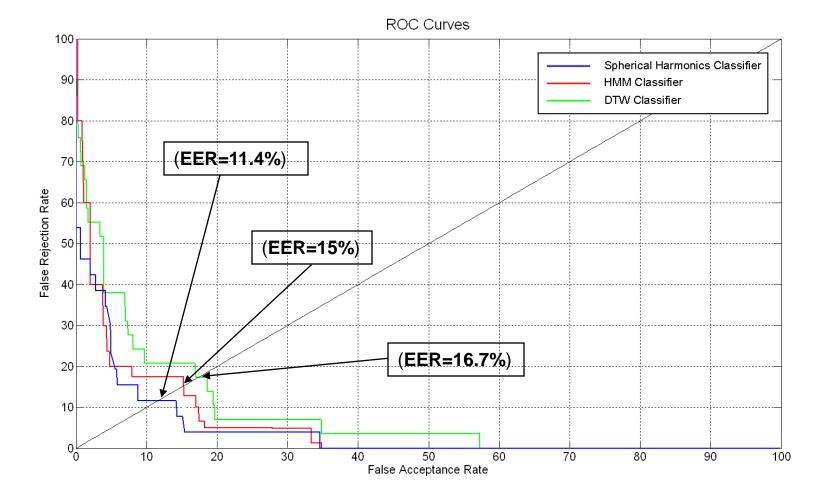


ITI Presentation, Thessaloniki 16 March 2011

CeRTH

T

Spherical Harmonics Results



ITI Presentation, Thessaloniki 16 March 2011

CeRTH

Conclusions

- Recognition using just a common stereoscopic camera.
- Unobtrusive, on the move, continuous authentication.
- Significant recognition potential just by the spatial information of the trajectories.
- Higher authentication rates are expected, given the relative entropies.
- Rotational invariance from spherical harmonics analysis.
- Privacy enabled method, since no obtrusive information is stored.
- Activity-related biometric authentication provided very promising results and is expected to maximize the performance of a multimodal biometric system.