Game Engine Fundamentals

Thanos Tsakiris
Research Associate, CERTH/ITI

What is a Game Engine?

Above all else ... NOT RESTRICTED TO GAME
DEVELOPMENT!

B Game = Simulation

m A game engine is a framework comprised of a collection of

different tools, utilities and interfaces that hide the low-level
details of the various tasks that make up the game. A game
engine is the core software of a game or a simulation and is
used to describe a set of code used to develop the game.
Everything you see on the screen and interact with in a game
world or simulation environment is powered by the game engine

It allows the abstraction of the details of doing common game or
simulation related tasks (e.g. rendering, physics, input), so that
developers can focus on the aspects that make their games or
simulations unique.

Popular Game Engines

m Commercial
ID Tech 4 (Quake 4, Doom3)
Steam (Half-Life 2, Left4Dead)
CryEngine, CryEngine 2 (Far Cry)
Unreal Engine
m LithTech (F.E.A.R)

m Open Source
m OGRE
m Delta3D
m ID Tech 3
m Irrlicht

Platforms

m Most Game Engines are developed with portability in
mind
m Target platforms: PC
= Wide range of CPUs
= Wide range of graphics cards
= Wide range of audio cards
= Wide range of memory
= Wide range of 1/O devices
= Wide range of operating systems (Apple OSX, Linux)
m DirectX, OpenGL graphics subsystems

Platforms

m Other platforms:
= VR Installations (CAVE, HMDs etc)
= Cell phones, PDAs, etc.

Game Consoles:
m Sony PS1, PS2, PS3, PSP
m Nintendo Wii, DS
m Microsoft Xbox, Xbox 360

Classic consoles

Arcade
Location based entertainment (LBE)

Interactive theater

Game Engine Framework

Game engines usually consist of libraries and tools that
implement:
Graphics
Audio

Input system

Physics

Artificial intelligence

Networking

Other utilities

General Requirements

m Maintain frame rate: usually 30 or 60 fps
m Never crash
m Tight memory & performance restrictions

B Often must work with unreleased hardware and
compilers

® Threading and Multi-Core support

B Minimal conﬁguration

Low Level Systems

m Data structures

m Math routines

B Memory management

m Resources, file I/0O

m [nput devices

m Widgets, tuning interface

B Performance monitoring

Low Level Components

m Data Structures

m Lists, trees, arrays, hash tables

m STL
m Math Routines

= Vectors, matrices, quaternions
= Geometry calculations

® Random numbers

m Misc. math routines

= Must run fast and should take advantage of hardware if
possible

Memory Management

®m Many games use custom memotry management
routines

®m Must avoid fragmentation

m [ayered memory management
m Paging

m Garbage collection

® Graphics card memory management

Resources & File 10

m [Fast loading
m Paging
m Parsing
m File formats

m XML

m Compression

m Resource packing

Input Devices

Control pads, joysticks
Keyboard, mouse

Special hardware (haptic, 6-DOF)
Force feedback

Microphone

Camera

Configuration

Button mapping

Calibration

Performance Monitoring

B Time is a critical resource

m Various pieces of hardware, each with their own
timing & performance characteristics: CPU,
graphics, audio, 10

m Many sophisticated profilers exist

m In-game budgets & warnings

® [n-game graphing

m Debugging tools for thorough analysis

Mid Level Systems

Rendering

Audio

Text

Collision detection
Physics

Scripting
Networking

Character animation

Cinematic playback

High Level Systems

Scene management
User control

Camera

Al (artificial intelligence)
Game logic

Game flow

Lighting, visual effects
HUD

Front end (user interface)

Graphics Subsystem

r s o

m Rendering
B Scene management

m Culling

m [evel of detail N!

m Terrain rendering

m Character Skinning
m Particle Engine
m Fffects (Sky, Water, Vegetation, Fog)

Rendering

Rendering

m [ayer on top of hardware

m Common APIs: OpenGL, Direct3D, PS2
m Render polygonal meshes (display lists)

m Lighting

m Graphics state

m Matrix & viewing transformations

m Shaders

Audio Subsystem

3D spatialization: panning, Doppler, Dolby Surround,
HRTF (head related transfer functions)

Manage sound priorities (voices)
Reverb, effects

MIDI

Music

Dynamic music

Stream off CD / DVD (multiple streams)

Voice

Tools

m Code Development Tools

Compilers (Visual C++, SN Systems, CodeWarrior, GNU)
Debugger

Profiler

Editor

Revision control (CVS, SourceSafe, SVN)

Integrated development environment (IDE)

C++, Assembly, Scripting Languages

Graphics languages: pixel & vertex shaders...

Design analysis tools

Documentation, standards

Tools

m Middleware
= Getting more and more popular and trusted

® Rendering: RenderWare, NDL, Intrinsic, OGRE,
OpenSceneGraph

® Physics: ODE, Havok, PhysX, Newton,
MathEngine

m XNA, Bink, FMOD, ScaleForm

Art Production Tools

m 3D Modeling & Animation (Maya, 3D Studio)
m Exporting Modules

m Asset management (AlienBrain)

m Paint (2D & 3D) (Photoshop, Z-Brush,
DeepPaint)

® Scanning (2D, 3D)
m Motion capture

m [n-game tools & editors

Audio Tools

m Recording

m Composing (ProTools)

m Sound effects (Reason)

m Spatial Audio Configuration tools

B [n-game tools

Game Design Tools

® [n-game tools
m [evel layout
m Prototyping tools (Director, Flash)

m Design tools
m GUI Tools

GUI Generation (CEGUI)

To create specialised graphical user interfaces we use libraries that allow

their use under a multitude of graphics rendering architectures (e.g.
OpenGL, DirectX etc)

The CEGUI library (Crazy Eddie’s GUI - http://www.cegui.org.uk) 1S one
of the most complete open-source libraries that is compatible with a

great number of 2D and 3D rendering and game engines (e.g. OGRE,
Delta3D, Dark Basic, Torque, Crystal Space 3D etc.)

The main characteristic of the CEGUI library is the ability for complete
customisation of component graphics and the ability to have different
gui schemes for different purposes at the same time (e.g. a GUI scheme
for menus, one for the main game etc., each one with different graphics
and functions)

Also, the GUI parameterisation is done in the most part in XML scripts
which allows for a great deal of GUI customisation without changing
the main game’s codebase.

GUI Generation (CEGUI)

GUI components example:

R

| B 0GRE Render Window =1 I:I'! .XE |

([Fite [objects Editor Window |

Load Test Layout

Quit

|.‘ Demo B - Listbox Demo _L X _.J L. Demo 8 - Information Window |\)< _.»'

The panel below gives some
information about the item under
the mouse.

The colour that will be used for the
selection when added to the list

Use this panel to add items.
The scrollbars change the
selection colour.

Current FPS: 399.801

rOe 108 09E

GUI generation (cont.)

m GUI Imageset example

‘ﬁu |ﬂ||,.
-i I 'U'.ﬂ. =

Differences between Game
Interfaces - WIMP

m Application Interfaces are based mainly on the WIMP
paradigm (Windows, Icons, Mouse, Pointer)

In contrast, game control interfaces are based on
direct manipulation of objects, the player, vehicles etc.
while WIMP elements are reduced to a secondary role
(selection menus, object inventories etc.)

Usage of special interaction devices in games
(Joystick, Joypad, Steering wheel etc.)

Differences between Game
Interfaces — WIMP (continued)

m WIMP applications: Reusage capability of ready-made

components (buttons, drop-down menus »Am)

m Games: Custom-made components are required most of the
time (special icons, pointers, 3D objects uAx.)

s 3 Lo =]
|
Odmyieg /
Xaprng /

Yrapyovio

Evipyraio

Xopoxtjpao

WIMP interface example Game Interface example

Input Handling

In general applications, the use of conventional controls 1s
usually handled by a ready-made API and each component
(button, text box, menu each) allows the attribution of a
function to a certain component action

On the other hand, although input APIs used in games allow for
some of these facilities, the majority of functions each user input
performs 1s up to the game programmers to implement since it
involves custom actions.

Input handling in most games relies on regular update each time
the screen is redrawn or at time intervals chosen by the
developer (Frame Rate Dependent — Frame Rate Independent)

In the case of frame rate dependent input control, the developer
must take care so that the screen refresh rate does not affect the

input handling (lag)

In a frame rate independent architecture, the programmer must
keep separate threads of execution for each function performed
by the game (graphics, physics, Al input etc), or maintain a
system of timers for each function that is independent from each
other

Input handling

m Context-dependent Handling

Every input can have a different function depending on the
circumstances: e.g., in an RPG game:

= [eft-click on an enemy results in a different action depending
on weather the user controls a sword or a pistol

m Left click on the terrain will move the player character with a
different speed depending on the type of terrain (road, rocks

etc.)

m Left click on an object can either be translated as
acquisition of the object (near the object) or motion
towards the object (far from the object) based on the
player character’s distance to the object

Multimodal Interfaces

m The majority of game systems use conventional interaction

devices (keyboard, mouse, joystick, joypad)

m In the last 2-3 years there are efforts to make game interaction
more natural e.g. Nintendo WitMote:

m WiiMote is not a multimodal solution but a more advanced motion
interaction using 6DOF infrared tracking (as in VR systems)

Multimodal Interfaces (cont.)

m Similar technique but with optical tracking i1s Sony’s EyeToy system and
Microsoft’s upcoming Project Natal

m This system allows the player to perform natural motions as well as to be
directly projected within the game space without using an avatar.

Multimodal Game interfaces (cont.)

Multimodal in game applications are still in research

By multimodal we mean systems where the user can use 2 or more interaction modes (e.g..
Natural motion tracking and Speech recognition, haptic interaction and gaze-tracking etc.)

TERFACE2006_DISABLED_GAME
Help

Colour Sonification

'.: e

{7~ Mother Nature
h keeps the
treasure secret

Multimodal Game interfaces (cont.)

m Haptic interaction devices aimed at games:

Novint Falcon

Interaction

Interaction within a game or a simulation 1s the most
important ingredient to the overall user satisfaction

Each game/simulation has its own requirements that
depend on the genre, the controls supported, the
response time of the interaction, how realistic 1s the
interaction response etc.

Fach application’s target group defines the interaction
options to a great extent.

m Whenever possible the ability for the user to
customize and modify interaction parameters is
imperative. (e.g. mouse motion speed, inverting

up/down axis, multi-modal control etc.)

Interaction (cont.)

Interface example: 3rd person Action Adventure

Basic supported actions: Character motion, weapon use, object acquisition object
use, inventory control, NPC dialogue (Non-Player Characters), character status

User requitements: Motion supported both by keyboard (up/down/left/right or
WASD buttons) and mouse

T Eﬂn;ﬁﬁé'z'. =
I '::. © AmooToAf 1: “Mefomopla mpog TV Kmﬁamg

E L oS USRS e s

= Kivnon mpog Ta mow @ = Kivnon mrpog gidi
= S1pogi e = Kimen mpos xopastioa) S
Xrtmmpa gidiol (He To papdi) = Avalpeon Kivnang

Kevrpikrj 086vn: Mevol mraixvidiod
| = OBévn xdpm: EmoTpogri oV
KEVTPIK 0B6vn

+ [AfKTpO Kivhang = Tpéfipo

= Awpkeg TpEfipo On/Off e q = Zoup aTo xdprm

= MeTakivnan Tou XdpTn

" @
T |

Interaction (cont.)

™ r=rerEse
| —— i
P

Character motion: This function is handled differently when keys are used than when mouse
1s used

Keys perform these actions:
m Up/down: increase/decrease motion speed forward and backwatd respectively affecting the animation
accordingly
m Left/Right: increase torque left/right respectively
Mouse motion actions:
® Click on the terrain moves the character to the spot (double-click = run)
m (Click on an object moves the character to the spot and the object is acquired
m (Click on a character moves the player to the spot and starts a dialogue with the character

Main Difference: When using the mouse the application has to handle the motion parameters
automatically (speed change, rotations, collisions, obstacle avoidance etc.)

Interaction (cont.)

e

Evragel. Epeic mpoywpdpe Kon B guvavTnBoUpE opyoTEpL.

Character dialogue: An example of using WIMP components

Modal dialogue windows
The creation of a dialogue control scripting system where depending on the dialogue
the game is affected accordingly

Interaction (cont.)

|I_V|:|\W ™~ |I_V|:|'\FR§"|.
i ' 4

PaBdi

KAeioipo

e S

Object acquisition

Basic questions: Which objects are considered active and can be acquired and how
are they acquired?

Usage of Collision materials so we know which are active and which are decorative

Usage of Collision detection so we know when the character is close enough to
acquire an object

Player notifications when an object is acquired (WIMP)

Interaction (cont.

=TT -

Mpog 1a o0 Ba KivrBoUYE;

C

Eivon moAU emikivEuva To povorramia, £xel ToAAG @idia Kol
BOEAAES. MAHE A0 TIS YPUMMES TOU TPEVOU,

Evragel. ENeig Tpoywpape Kot Ba guvavTnBoupe apyoTepa.

Kheigigo |

o —

Inventory Control- Object usage

Basic questions: Which actions are supported in the inventory? How can objects be
used? How many objects fit in the inventory? How many objects of the same type
can the player have? What happens when 2 objects are combined to form a new
one? How do objects affect the character when used?

The inventory GUI also contains the list of dialogues played so far

Game Engines in Research

m VR is dead — Long live Game Engines!

m Any research project that requires the implementation
of simulation and 3D visuals can utilize a game engine
for a great part of the development

m FExamples:

= SIMILAR NoE 06: A multimodal game for users with
disabilities (OGRE)

VR@Theatre: Generation and Simulation of a theatre play
(OGRE)

® Virthualis: Human factors simulation in VR (Delta3D)

Game Engines in Research

m CERTH/ITI has implemented mote than 10 projects using a game engine (OGRE)
including a full game for the Museum of Macedonian Struggle

N INETITOYTO

%,

OCTHAEMATIKHE

Game Engines in Research

m We are now beginning implementation of the simulation platform for the VERITAS
project to facilitate Physical Simulation of Accessibility within a 3D environment using
the Delta3D game engine

Game Engines in Research

'‘shift+1":5et Task 1
'shift+2':Sat Task 2
'1":Set Pose 1
'2':5ek Pose 7
'3 Set Pose 3
'4':Set Pose 4

