

Reconfigurable Computing and its Applications on Image Processing

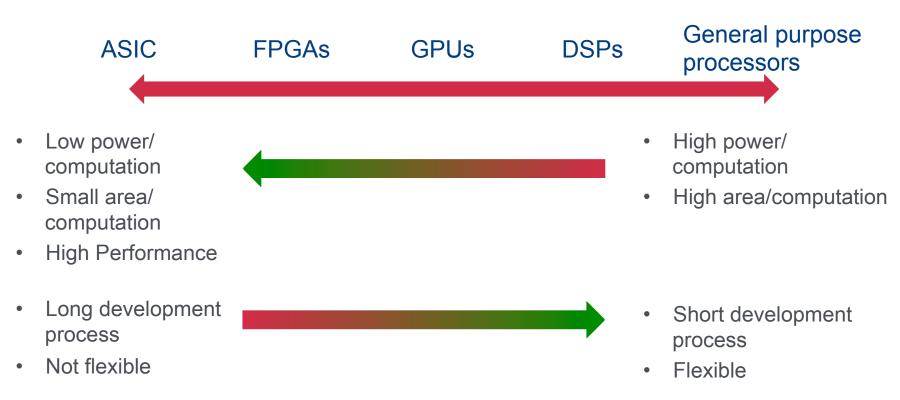
Christos Bouganis ccb98@ic.ac.uk

Outline

- Reconfigurable Computing
 - Need for reconfigurable computing
 - Current devices
 - Programming models
- FPGA Optimizations: Word-length optimization
- Dimensionality Reduction Framework targeting FPGAs

Reconfigurable computing

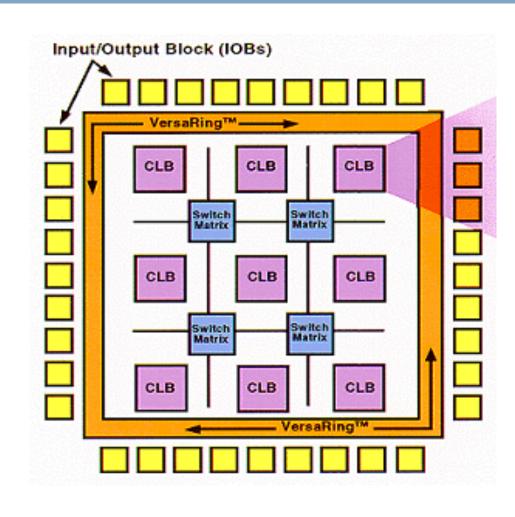
Spectrum of computational devices



Benefits come by customizing your hardware to the application

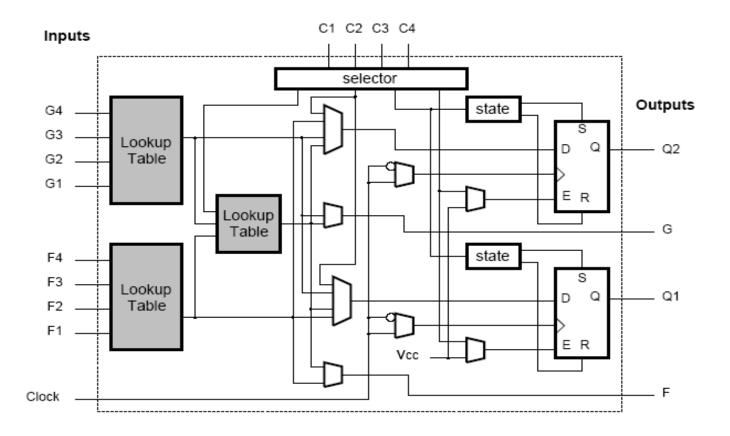
Field Programmable Gate Array - FPGA

- Xilinx first to introduce SRAM based FPGA using Lookup Tables (LUTs)
- Xilinx 4000 series contains four main building blocks:
 - Configurable Logic Block (CLB)
 - Switch Matrix
 - VersaRing
 - Input/Output Block



Structure of FPGAs - CLB

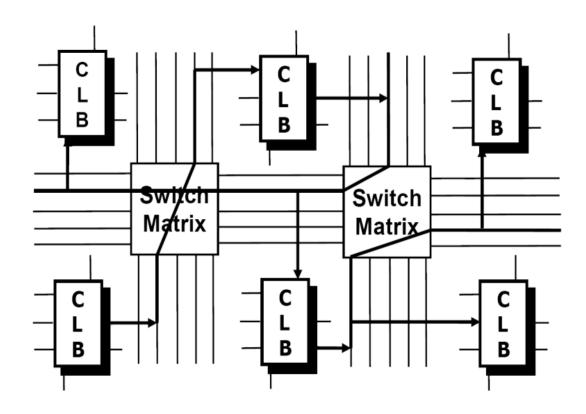
- Each Configurable Logic Block (CLB) has 2 main Look-up Tables (LUTs) and 2 registers.
- The two LUTs implement two independent logic functions F and G.



Structure of FPGAs - Programmable Interconnect

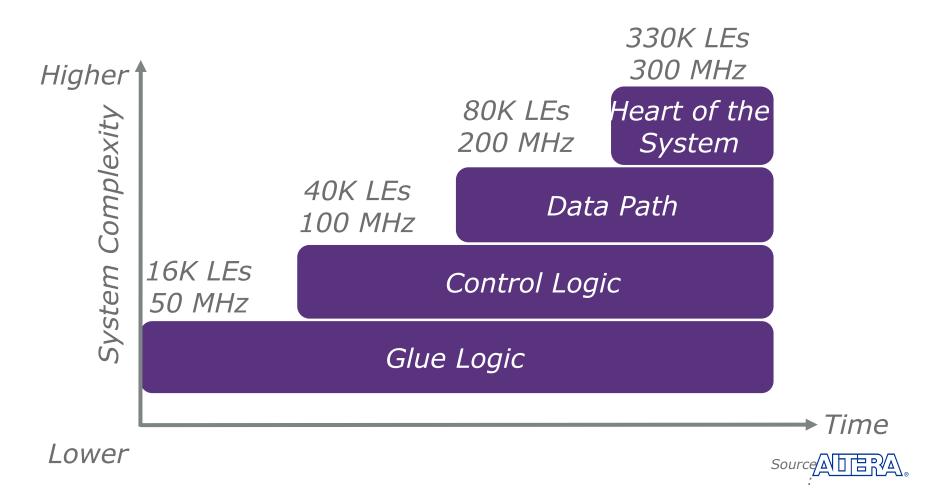
Switch-box provides programmable interconnect

- Local interconnects are fast and short
- Horizontal and vertical interconnects are of various lengths

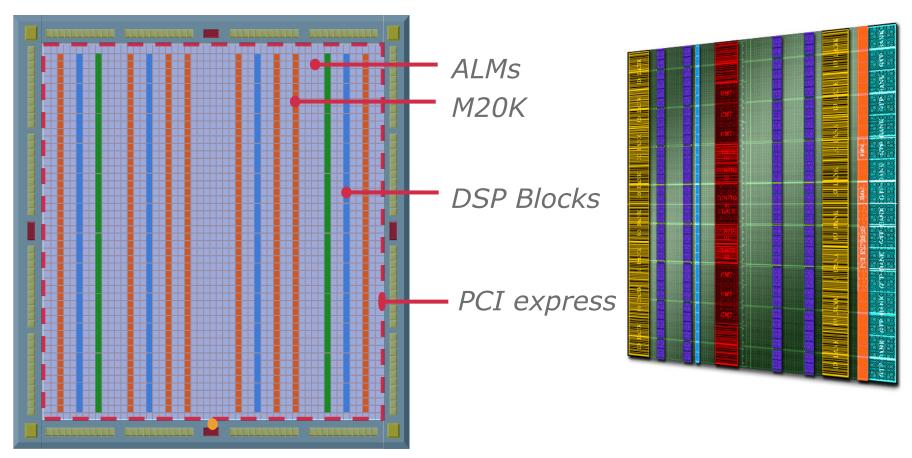


FPGA's journey: from Glue Logic to SoC

FPGAs are now being used everywhere!



Modern FPGA devices – More heterogeneous



Virtex-7

Programming tools

- VHDL
 - Low level programming language
 - Best performance
- Domain specific languages
 - System Generator for DSP (Xilinx)
 - DSP builder (Altera)
 - Simulink (Mathworks)
- High-level languages
 - C to RTL (Handel-C, CatapultC, ...)
 - Matlab to RTL
- Specific tools to speed-up development
 - FloPoCo

Low level Hard to program High performance

Tool needs to bridge the gap

High level
Easy to program
Low performance

High level programming potential

An example from a first year group project

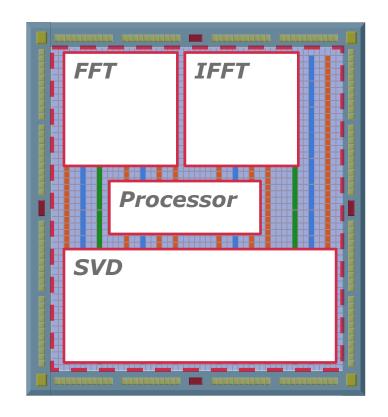
- 4 weeks learning FPGA + Handel-C
- 4 weeks of work

A system on an FPGA

Mapping of an application to an FPGA

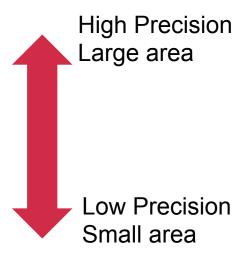
- Modern FPGAs allow SoC
- Performance improvement => Parallelism

Resources (area) Parallelism



Wordlength Optimization

- FPGAs operate on any number representation
 - Floating point (Double precision)
 - Floating point (Single precision)
 - Custom floating point
 - Fixed point number representation

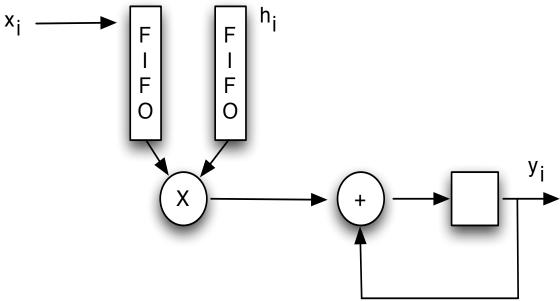


- Example:
 - Mapping of an FIR filter to an FPGA
 - Input: pixels (8-bits)

$$y(n) = \sum_{i=0}^{N-1} h(i) * x(n-i)$$

Architecture 1: Sharing resources

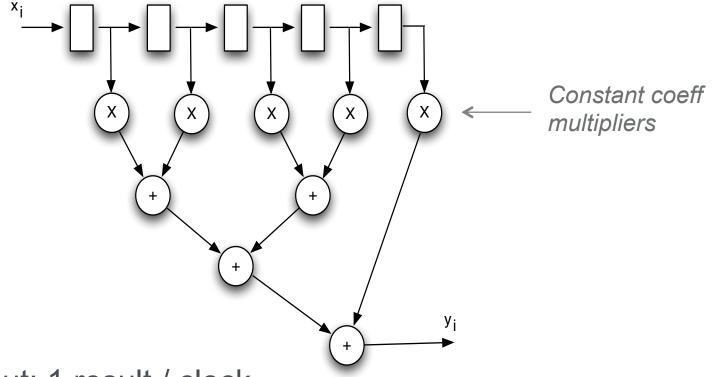
The architecture utilizes 1 multiplier + 1 adder Maps very well in modern FPGAs (MAC units + embedded RAMs)



Throughput: 1 result / N clocks

Architecture: Fully unrolled

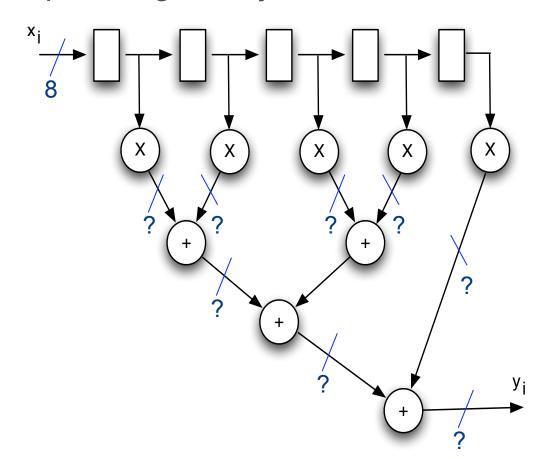
The architecture utilizes N multipliers + N-1 adders (direct-form)



Throughput: 1 result / clock

Wordlength Optimization Problem

Select the wordlengths of the various signals optimizing an objective function



Possibilities

- Uniform selection
 - Similar to CPU/DSP
- Select wordlength for each signal
 - Interval arithmetic
 - Allow errors
 - Monte Carlo
 - Analytical methods (LTI)

Example

Dimensionality Reduction Framework targeting FPGAs

Motivation

Many applications require the representation of data using a set of fewer variables allowing a certain error in the approximation

Dimensionality Reduction or Feature Extraction problem

Examples:

- Face detection/recognition
- Image compression
- ...

Map a dimensionality reduction system in a modern FPGA in an efficient way (resource usage)

Principal Component Analysis Face recognition example

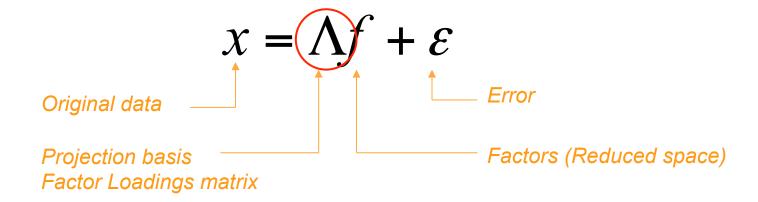
Original space (2000 dimensions)

Reduced space * (3 dimensions)

Reduced space * (40 dimensions)

Background - Linear Projection

Linear projection

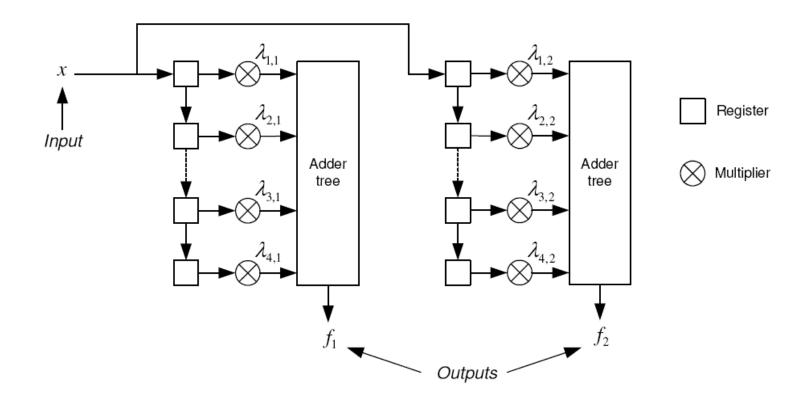


When projection vectors are orthogonal:

$$f = \Lambda' x$$

Hardware implementation – Fully unrolled

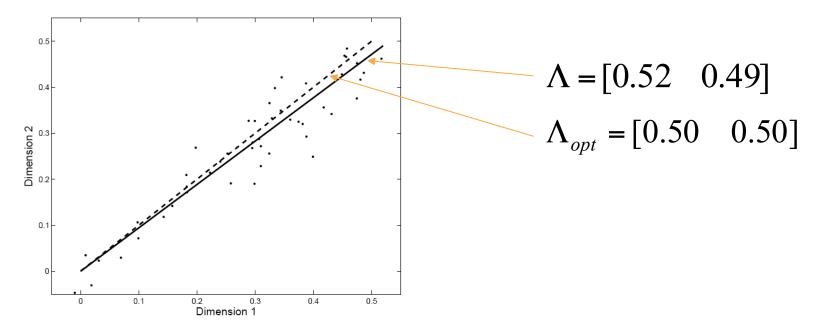
Mapping: $Z^4 \rightarrow Z^2$



Related work

Current methodology

- Estimate the new space using PCA (in floating point)
- Quantize the coefficients to fixed point for hardware implementation
- Drawback: Does not take into account the available hardware
- Illustration:



Proposed algorithm

Main idea

 Couple the problem of new space basis calculation and hardware implementation optimization

Bayesian Factor Analysis Model

$$x = \Lambda f + \varepsilon$$

$$\sim \mathcal{N}(0, \Psi)$$

Bayesian Factor Analysis Model

Probability distribution of data

$$p(x^{i}|f^{i}, \Lambda, \Psi) = \mathcal{N}(x^{i}|\Lambda f_{i}, \Psi)$$

$$= (2\pi)^{-P/2}|\Psi|^{-1/2} \times$$

$$\exp\left(-\frac{1}{2}(x^{i} - \Lambda f^{i})'\Psi^{-1}(x^{i} - \Lambda f^{i})\right)$$

Factors

Prior distr.
$$f^i \sim \mathcal{N}(0, \Sigma_F)$$
 Posterior distr.
$$p(f^i|x^i, \Lambda, \Psi) \propto p(f^i)p(x^i|f^i, \Lambda, \Psi) = \mathcal{N}(f^i|m_F^*, \Sigma_F^*)$$

$$\Sigma_F^* = (\Sigma_F + \Lambda' \Psi^{-1} \Lambda)^{-1}$$

$$m_F^* = \Sigma_F^* \Lambda' \Psi^{-1} x^i$$

Bayesian Factor Analysis Model (cont')

Factor Loadings matrix Λ

Prior distr.
$$p(\Lambda) = \prod_{p=1}^{P} \prod_{k=1}^{K} p(\lambda_{pk}) \qquad \qquad \text{(assume independence)}$$

Posterior distr.
$$p(\Lambda | X, F, \Psi) \propto p(X | F, \Lambda, \Psi) p(\Lambda)$$

$$= p(X|F, \Lambda, \Psi) \prod_{p=1}^{P} \prod_{k=1}^{K} p(\lambda_{pk})$$

Insert any prior knowledge about the cost of the implementation

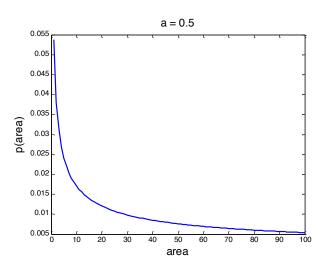
Mapping implementation cost to prior distribution of basis

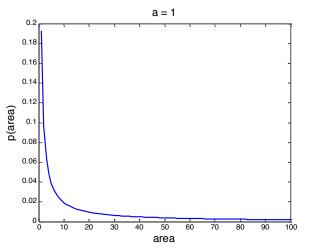
Seek function that maps area cost to a probability distribution

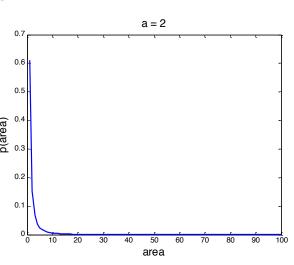
- monotonically decreasing
- no negative
- sum to one

Current work:

$$g(A(\lambda_{pk})) = c(A(\lambda_{pk}))^{-a}$$
, $a, c > 0$



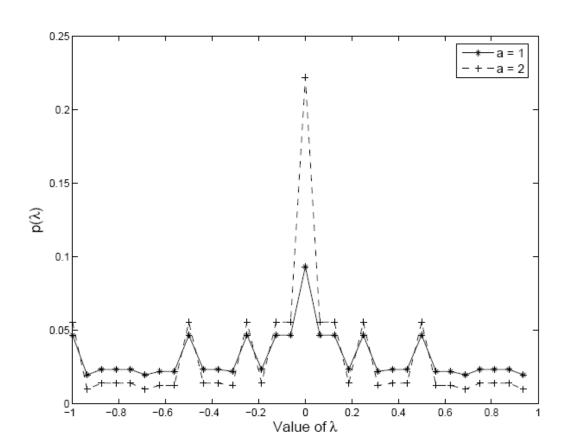




Mapping area to probability

Target device: XC2V6000

CORE Generator to calculate the area of a multiplier Flexible model to accommodate other devices



Targeting the heterogeneity of modern FPGAs

Aim: Efficient allocation of embedded multipliers

• Indicator matrix

$$Z = \begin{bmatrix} z_{1,1} & z_{1,2} \\ z_{2,1} & z_{2,2} \\ z_{3,1} & z_{3,2} \\ z_{4,1} & z_{4,2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \qquad \Lambda = \begin{bmatrix} \lambda_{1,1} & \lambda_{1,2} \\ \lambda_{2,1} & \lambda_{2,2} \\ \lambda_{3,1} & \lambda_{3,2} \\ \lambda_{4,1} & \lambda_{4,2} \end{bmatrix}$$

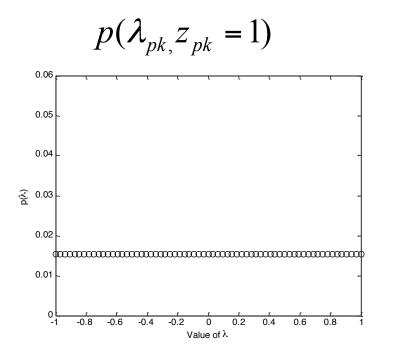
1 indicates embedded multiplier, 0 slice based multiplier

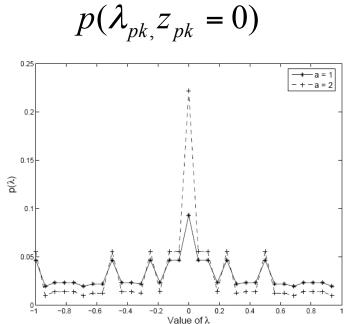
$$p(\lambda_{pk}, z_{pk}|X, F, \Psi) \propto p(X|F, \Lambda, \Psi, Z) \prod_{p=1}^{P} \prod_{k=1}^{K} p(\lambda_{pk}, z_{pk})$$

Targeting the heterogeneity of modern FPGAs (2)

Sampling

- Sample Z through uniform distribution imposing $\sum z_{pk} = N$
- ullet Prior probability distribution has two forms depending on Z_{pk}

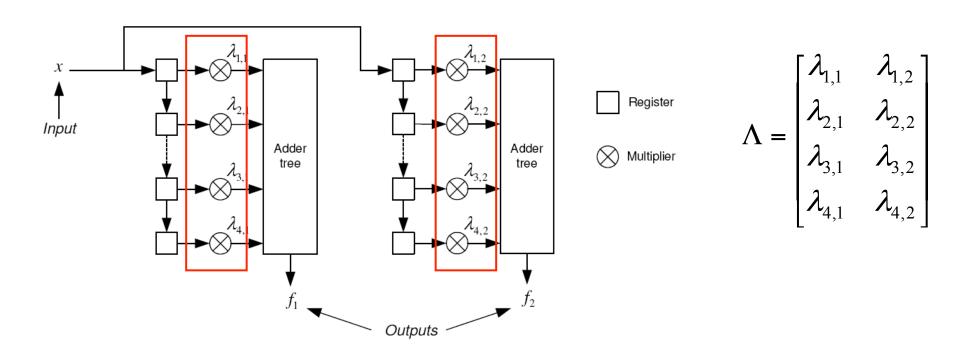




Assumption of independence

Factor Loading matrix

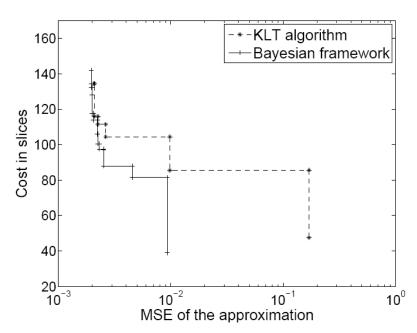
$$p(\Lambda) = \prod_{p=1}^{P} \prod_{k=1}^{K} p(\lambda_{pk}) \implies Cost(\Lambda) = \sum_{p=1}^{P} \sum_{k=1}^{K} Cost(\lambda_{pk})$$



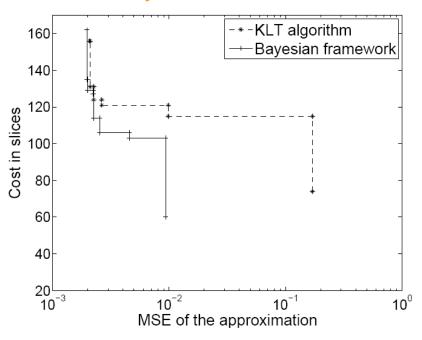
Performance Evaluation

Mapping:
$$R^3 \rightarrow Z^2$$

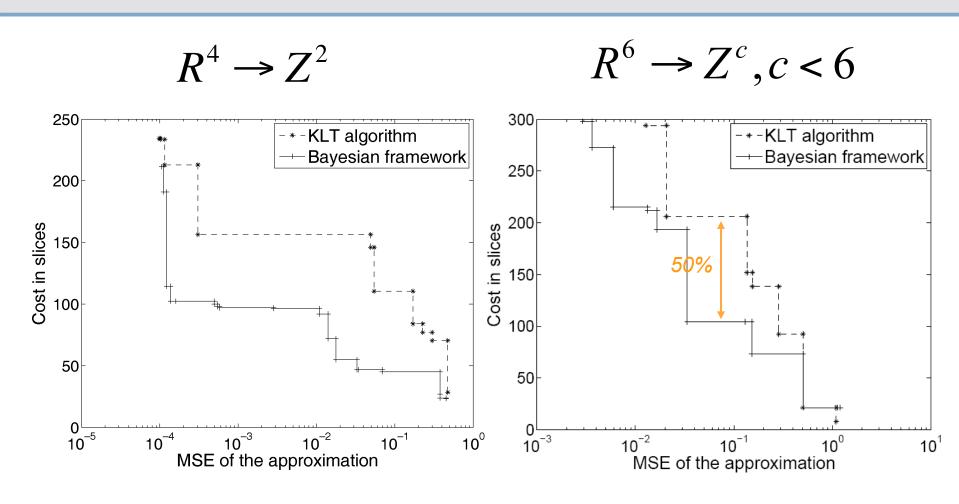
Estimated results



Synthesized results



Performance Evaluation (cont')

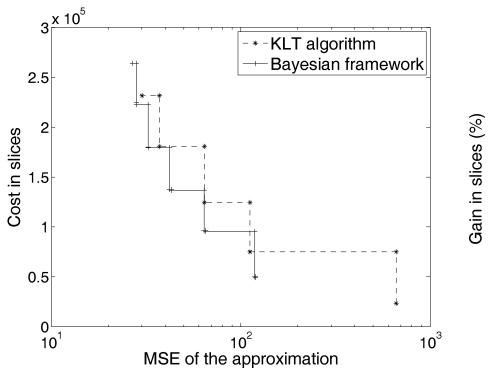


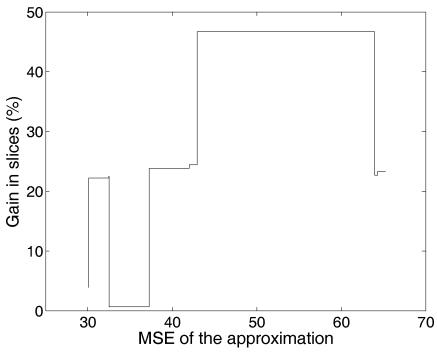
2 DSPs and 2 BlockRAMs available

Unconstrained reduced space

Performance Evaluation - Faces

$$Z^{500} \rightarrow Z^{40}$$





Performance Evaluation - Faces

30% area reduction

Other works in my group

- Ego-motion estimation for UAV navigation
- Real-Time Super-resolution Sensor
- Object detection / recognition (training/classification)
- Design reliable systems with unreliable hardware
- Acceleration of SVM training/classification stages
- Acceleration of Monte Carlo Markov Chain
 - Parallel Tempering for Bayesian Inference
 - Adaptive datapaths for financial instrument calculation

Summary

- FPGAs offer a good computational platform
 - Power reduction
 - Exploit any parallelism in the algorithm
 - ASIC becomes more and more expensive => FPGA alternative platform
- FPGAs are suitable for image processing
 - Custom number representation
 - Accommodate error => leads to interesting trade-offs
- Current FPGA trends
 - Large devices: (various hard blocks => more coarse grain)
 - Small devices: Low power
- Work on high level tools (languages, libraries, ...)
 - Bridge the gap between productivity and available resources

Future

Is FPGA the future?

Probably not.

Heterogeneous Systems + Tools + Libraries

The future will be interesting