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Abstract—In this paper we address the problem of classifying 

multidimensional time-evolving data in dynamic scenes. To take 

advantage of the correlation between the different channels of 

data, we introduce a generalized form of a stabilized higher-

order linear dynamical system (sh-LDS) and we represent the 

multidimensional signal as a third order tensor. In addition, we 

show that the parameters of the proposed model lie on a 

Grassmann manifold and we attempt to address the classification 

problem through the study of the geometric properties of the sh-

LDS's space. Moreover, to tackle the problem of non-linearity of 

the observation data, we represent each multidimensional signal 

as a cloud of points on the Grassmann manifold and we create a 

codebook by identifying the most representative points. Finally, 

each multidimensional signal is classified by applying a bag-of-

systems approach having first modeled the variation of the class 

of each codeword on its tangent space instead of the sh-LDS's 

space. The proposed methodology is evaluated in three different 

application domains, namely video-based surveillance systems, 

dynamic texture categorization and human action recognition, 

showing its great potential.    

 
Index Terms—Linear dynamical systems, grassmann 

geometry, higher order decomposition, multidimensional signal 

processing.   

 

I. INTRODUCTION 

ANY computer vision problems dealing with the analysis 

of dynamic scenes involve the modeling and 

classification of multidimensional time evolving data. 

Applications in this area usually concern dynamic textures 

(i.e., non-rigid objects such as water, fire, smoke, etc.) 

categorization, human activity modeling and recognition, gait 

analysis, face recognition and event detection from video 

sequences. To model the statistical properties of such data, it 

is often sensible to assume each observation to be correlated to 

the value of an underlying latent variable, or state, that is 
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evolving over the course of the sequence [1]. 

  A well known dynamical system, which is used by a 

number of state-of-the-art techniques [2] to model a wide 

variety of spatio-temporal data, is the first order autoregressive 

moving average (ARMA) model with white zero-mean 

independent and identically distributed Gaussian input, also 

known as Linear Dynamical System (LDS). LDS-based 

approaches have been successfully used for modeling time 

series in engineering, economics and social sciences. 

  In all of these application domains, the temporal variation 

of the data sequence is modeled as a LDS after a system 

identification process aiming to define the parameters of the 

dynamical model. Several approaches have been proposed for 

this purpose based on EM algorithm [3], non-iterative 

subspace methods [4] or principal components analysis [5]. 

The comparison between two LDS systems is then performed 

using a similarity metric, such as a distance [6], [7] or kernel 

[8], with  Martin distance [9] to be one of the most common 

approaches. After the definition of the similarity metric, 

standard classifiers such as Nearest Neighbors or Support 

Vector Machines are usually used for the final categorization 

of a query data sequence [10].  

  To address the problem of the multi-dimensionality of data, 

most of the researchers often make a simplifying assumption 

of the data structure, which leads to the concatenation of data 

into a simple vector representing a point that follows a 

trajectory as time evolves (e.g., in the case of dynamic texture 

analysis, each frame is unfolded into a vector containing only 

grayscale information or the concatenated pixels' intensities of 

all channels, i.e., R, G and B components). This representation 

of data is driven by the fact that standard LDS systems extract 

dynamic information from a single element, i.e., a vector 

representation of data, and thus they do not fully exploit any 

hidden correlation between the different channels of data. 

Apart from taking advantage of the multi-dimensionality of 

data, significant improvement in the classification results can 

be achieved through the study of the geometric properties of 

the space in which the parameters of the model lie. Hence, 

instead of using subspace angles between the models, this 

study will allow us not only to define a more efficient 

similarity metric in the non-Euclidean space of the dynamical 

model, known as Grassmann manifold, but also to model the 

variation of the classes on this space. However, an inherent 
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limitation of all LDS systems is the fact that they try to model 

non-linear observation data using a system of linear equations. 

To address the problem of non linear structure of data other 

methods from the area of video semantic recognition have 

proposed the development of semi-supervised feature 

selection algorithms, e.g., Han et al. [11] proposed a 

framework of semi-supervised feature selection via spline 

regression. Here, we attempt to address the problem by 

considering the multidimensional evolving data, as a cloud of 

points (instead of a single point) on the Grassmann manifold 

and we create a codebook  in order to represent each 

multidimensional signal as a histogram of Grassmannian 

points. More specifically, the main contributions of this paper 

are summarized as follows: 

 We propose a novel methodology for the modeling and 

classification of multidimensional time evolving data. The 

proposed methodology aims to increase the robustness of 

linear dynamical systems by taking advantage of the 

multidimensionality of data and the geometric properties 

of the descriptor's space.     

 We introduce a generalized form of a new stabilized 

higher-order linear dynamical system (sh-LDS), which can 

be used in various classification problems dealing with 

multidimensional time evolving data represented as a third 

order tensor. By applying a generalization of the singular 

value decomposition, we can extract a new descriptor, 

which enables us to i) exploit the correlation between the 

different channels of data, ii) model multidimensional 

signals of different temporal size and compare them 

without needing to employ first any sub-sampling 

technique for the alignment of signals, iii) reduce the 

computational cost by applying dimensionality reduction 

to the space of the hidden variable and iv) improve 

robustness by introducing a stabilization process based on 

a convex optimization technique. 

 By taking advantage of the geometric properties of sh-

LDS's space, we propose a new descriptor, namely 

Histograms of Grassmannian Points (HoGP), in order to 

improve the classification of multidimensional signals. 

Moreover, to address the problem of non-linearity of data, 

we represent each multidimensional signal as a cloud of 

points on the Grassmann manifold and we create a 

codebook by identifying the most representative of them. 

For the better classification of a sh-LDS model to one of 

the representative codewords, in our method we attempt to 

model the variation of the class of each codeword on its 

tangent space instead of the sh-LDS's space. 

 To demonstrate the reproducibility of the proposed 

method, we carried out extensive tests in three different 

application domains: i) video-based surveillance systems, 

ii) dynamic texture categorization and iii) human action 

recognition. More specifically, ten different datasets were 

used, while the performance of the proposed method was 

compared against a number of different variations of LDS 

systems and other state of the art algorithms.        

  The remainder of this paper is organized as follows. 

Related work is presented in Section II. Section III presents 

the generalized form of sh-LDS model and the proposed 

HoGP descriptor. Finally, experimental results are discussed 

in Section IV, while conclusions are drawn in Section V. 

II. RELATED WORK 

Time evolving data is usually modeled by temporal state-

space methods, such as Hidden Markov Models (HMMs), 

Conditional Random Fields (CRFs) or dynamical systems. 

Brand et. al [12] presented algorithms for coupling and 

training HMMs to model interactions between processes that 

may have different state structures and degrees of influence on 

each other, while Zhuang et. al [13] proposed HMM 

supervectors, to improve patch-based GMM supervector 

approaches [14], and then calculated their Kullback-Leibler 

divergence. On the other hand, in [15] CRFs were used for 

contextual motion recognition, while in [16] a two-layer 

model was proposed along with CRFs for encoding actions 

and viewpoint-specific poses. 

  LDSs are considered as a more general form of HMMs [17] 

and they have shown promising results in a variety of 

applications. To this end, several techniques have been 

proposed aiming to address the problem of system 

identification in linear dynamical systems [4]. However, the 

method proposed by Doreto et. al [5] for dynamic texture 

analysis is considered as the most versatile approach. The 

method aims to define the parameters of the system using a 

fast closed-form suboptimal method based on principal 

component analysis, i.e., the decomposition of the image in a 

simple linear form. Before the decomposition, each frame is 

transformed into a vector representation containing grayscale 

information or the concatenated color components.  

  To provide a more flexible and natural way of 

decomposition, a model based on tensor representation and 

Tucker decomposition was presented in [18] for dynamic 

texture synthesis, i.e., for the creation of artificial textures. 

Tensor representation and factorization are widely used in 

multimedia applications, since they can effectively preserve 

the structure information. For instance, Guo et al [19] 

proposed a tensor learning regression framework based on CP 

decomposition, while Zhang et al. [20] presented a novel 

tensor bag of words model for multimedia analysis. More 

recently, for classification purposes in dynamic texture 

analysis, a higher order model based on tensor representation 

and factorization was proposed in our previous work [21] for 

the identification of smoke in video surveillance applications. 

The model was based on the consideration that the orthogonal 

matrix corresponding to the decomposition of the input signal 

unfolded along the time axis can be used as the mapping 

matrix of the system. However, since this model was 

developed as part of an ad-hoc solution for smoke detection in 

video sequences, there were some limitations for its general 

application in other classification problems. The main 

limitation stems from the fact that the size of the descriptor 

parameters is associated with the size of the sequence, hence, 

the model was only applicable to spatio-temporal cuboids, 

while the computational cost could increase significantly for 

long sequences. To this end, in this paper, we propose a 



generalized sh-LDS model, which not only addresses the 

aforementioned problems by considering the observation data 

as a collection of time evolving signals, represented as a third 

order tensor, but it also enables the dimensionality reduction 

of the descriptor parameters and the stabilization of the model.        

  For the comparison of two dynamical models most of the 

researchers focus on the definition of distances or kernels. 

More specifically, a measure of the distance between two 

ARMA processes based on their cepstrum coefficients was 

presented by Martin in [9], while in [6] a notion of subspace 

angles between two ARMA models was defined as the 

principal angles between the column spaces generated by the 

observability matrices of the two models. Chan and 

Vasconcelos [7] proposed a probabilistic kernel based on 

Kullback-Leibier (KL) divergence between Gauss-Markov 

processes. The KL-kernels were derived for dynamic textures 

in both image and hidden state space. Recent advances on 

distances between probabilistic models from the area of 3D 

object or image retrieval could be also investigated for their 

application to dynamic texture classification For instance, 

Wang et al. [22] presented a discriminative probabilistic object 

modeling approach defining the distance between two objects 

as the upper bound of the KL divergence of the corresponding 

probabilistic models, while in [23] a compact semantic method 

along with a semantic distance matrix learning approach were 

proposed.    

In [24], Chan and Vasconcelos presented a new dynamical 

model based on kernel PCA and the computation of Martin 

distance between the kernel dynamic textures. A family of 

kernels based on Binet-Cauchy theorem was presented in [8] 

and later Binet-Cauchy distance for LDSs based on kernel 

PCA was employed in [25]. More recently, Ravichandran et 

al. [26] attempted to model video sequences with a collection 

of LDSs, which are then used as features in a bag of systems 

approach, while in our previous work in [27] we used 

traditional LDSs and Martin distance to create histograms, as 

part of an ad-hoc algorithm, for the detection of flame in video 

surveillance systems. On the other hand, Turaga et al. [28] 

studied the geometry of the LDS space and proposed 

algorithms for supervised and unsupervised clustering on the 

Grassmann and Stiefel manifold for face and action 

recognition, while in [29] a kernel analysis on Grassmann 

manifold for action recognition was presented. In this paper, 

we propose a new algorithm, namely histogram of 

Grassmannian points (HoGP), aiming to improve the 

classification of multidimensional signals in the space of sh-

LDS descriptor. Experimental results with different variations 

of LDS models and various distances have shown the great 

potential of the proposed algorithm.           

III. STABILIZED HIGHER ORDER LDS 

A linear dynamical system is associated with a first order 

ARMA process with white zero mean IID Gaussian input. 

More specifically, the stochastic modeling of both signal 

dynamics and appearance is encoded by two stochastic 

processes, in which dynamics are represented as a time-

evolving hidden state process x(t) ∈ 𝑅𝑛 and the observed data 

y(t) ∈ 𝑅𝑑  (e.g., for a video frame, d indicates the number of 

pixels in a frame y(t)) as a linear function of the state vector: 

 

 𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵𝑣(𝑡) (1) 
 

 𝑦(𝑡) = 𝑦̅ + 𝐶𝑥(𝑡) + 𝑤(𝑡) (2) 

 

where 𝐴 ∈ 𝑅𝑛𝑥𝑛 is the transition matrix of the hidden state, 

while 𝐶 ∈ 𝑅𝑑𝑥𝑛 is the mapping matrix of the hidden state to 

the output of the system (Table I contains the basic notations 

and their definitions). The quantities w(t) and Bv(t) are the 

measurement and process noise respectively, with w(t)~N(0,R) 

and Bv(t)~N(0,Q), while 𝑦̅ ∈ 𝑅𝑑 is the mean value of the 

observation data. The LDS descriptor, 𝑀𝐿𝐷𝑆 = (𝐴, 𝐶), 

contains both the appearance information of the observation 

data Y=[y(1), y(2),...., y(N)] modeled by C, and its dynamics 

that are represented by A. For the estimation of the system 

parameters, several approaches have been proposed based 

either on EM algorithm [3] or non-iterative subspace methods 

[4]. Since these approaches require high computational cost, a 

suboptimal method was proposed in [5], according to which 

the columns of the mapping matrix C can be considered as an 

orthonormal basis, e.g., a set of principal components. To this 

end, we decompose matrix Y (before the decomposition, we 

first need to subtract from Y the mean value 𝑦̅) by applying 

singular value decomposition: 

 

 𝑌 = 𝑈𝛴𝑉𝑇 = 𝐶𝑋 (3) 

 

where the columns of the mapping matrix C are the principal 

components, i.e., C=U, and 𝑋 = [𝑥(1), 𝑥(2), … , 𝑥(𝑁)] =
𝛴𝑉𝑇are the estimated states of the system. If we define 𝑋1 =
[𝑥(1), 𝑥(2), … , 𝑥(𝑁 − 1)] and 𝑋2 = [𝑥(2), 𝑥(3), … , 𝑥(𝑁)], 
the transition matrix A, containing the dynamics of the signal, 

can be easily computed by using least squares as: 

 

𝐴 = 𝑋2𝑋1
𝑇(𝑋1𝑋1

𝑇)−1 (4) 
 

TABLE I 

BASIC NOTATIONS AND DEFINITIONS 

Symbol Definition 

Y observed time series 
X hidden state time series 

y(t) observed data for time instant t 

x(t) hidden state for time instant t 

d dimension of the observed data 

n dimension of the hidden state 

M number of elements 
N number of samples 

A transition matrix  

C mapping matrix  
U orthogonal matrix 

S core tensor 

ash stabilized transition matrix in vector form 

𝑀𝑠ℎ stabilized higher order LDS descriptor 

𝑂𝑚
𝑇  finite observability matrix of size m 

V tangent vector  
G Grassmannian point 

A. The generalized form of higher-order LDS 

As can be easily noticed from equation (3), LDS model 



exploits information from only one element (or channel), thus, 

in the case of multidimensional time evolving data the 

concatenation of different components into one single 

element, i.e., Y, is required. To address this limitation, in this 

paper we propose a new model, which is called stabilized 

higher order LDS (sh-LDS), and we present a generalized 

form of the model for its application to various classification 

problems dealing with multidimensional time evolving data.  

More specifically, let's consider a multidimensional time 

series, which is represented by a tensor 𝑌 ∈ 𝑅𝑀𝑥𝑁𝑥𝑑  where M 

is the dimension of data, i.e., the number of data elements, N is 

the number of samples and d indicates the number of observed 

data in each element per sample (e.g., for a color video 

sequence the number of elements, M, is equal to three, N is the 

number of frames and d indicates the number of pixels in a 

frame), as shown in Fig.1. To extract the dynamics of the 

multidimensional signal we need to define a stochastic process 

as in (1) and (2) and define parameters A and C. Since in our 

case the sequence of the observation data is represented by a 

third order tensor, we need to apply a generalization of the 

singular value decomposition for higher order tensors, such as 

higher-order SVD analysis [30].      

 

 
Fig. 1. The multidimensional time series is represented by tensor Y of size 

MxNxd  

More specifically, we first subtract from Y the temporal 

average 𝑌̅ in order to construct a zero mean tensor in the time 

axis and then we decompose Y  by applying higher order SVD 

analysis: 

 𝑌 = 𝑆 ×1 𝑈(1) ×2 𝑈(2) ×3 𝑈(3)  (5) 

 

where 𝑆 ∈ 𝑅𝑀𝑥𝑁𝑥𝑑 is the core tensor, 𝑈(1) ∈ 𝑅𝑀𝑥𝑀, 𝑈(2) ∈

𝑅𝑁𝑥𝑁  and 𝑈(3) ∈ 𝑅𝑑𝑥𝑑  are orthogonal matrices containing the 

orthonormal vectors spanning the column space of the matrix 

unfolding Y(i) and ×𝑖 denotes the i-mode product between a 

tensor and a matrix [30], with i=1,2 and 3. Since the columns 

of the mapping matrix C of the stochastic process need to be 

orthonormal, we can easily choose one of the three orthogonal 

matrices of equation (5) to be equal to C. In addition, given 

the fact that the choice of matrices A, C and Q in equations (1) 

and (3) is not unique, we can consider C=Ch=U(3)∈ 𝑅𝑑𝑥𝑑  and 
 

𝑋 = 𝑆 ×1 𝑈(1) ×2 𝑈(2)   (6) 

Hence, equation (5) can be reformulated as follows: 

 

𝑌 = 𝑋 ×3 𝐶ℎ ⇔ 𝑌(3) = 𝐶ℎ𝑋(3) (7)   

where 𝑌(3) and 𝑋(3) indicate the unfolding along the third 

dimension of tensors Y and X respectively. Similarly, by 

unfolding tensor X of equation (6) along the third dimension, 

we can easily define matrices X1 and X2. The transition matrix 

Ah∈ 𝑅𝑑𝑥𝑑 , containing the dynamics of the multidimensional 

time series, can then be easily computed by using least squares 

as in equation (4). 

 

 
Fig. 2. Dimensionality reduction of the hidden state's space represented by 

tensor X.  

 

Hence, the new descriptor Mh consists of two parameters, 

matrices Ah and Ch, which both belong to 𝑅𝑑𝑥𝑑 . This is 

something that was expected, as in this generalized form of 

our descriptor, we have considered that i) the signal in each 

time instant t and for each element e (with e=1,2...M) is 

represented as 𝑦𝑒(𝑡) ∈ 𝑅𝑑 and ii) the mapping matrix of the 

hidden state is equal to the orthogonal matrix that contains the 

orthonormal vectors spanning the space of the third dimension 

of tensor Y (i.e., the number of the observed data in each 

channel per sample). In this way, the size of matrices Ah and 

Ch is completely independent of time, i.e., the number of 

samples, and the dimension of the signal. Especially, the first 

enables us to model multidimensional signals of different 

temporal sizes (i.e., different number of frames or samples) 

and compare them without needing to apply first any sub-

sampling technique in order to align the signals.   

However, since the size of the descriptor's parameters is 

related to the total number of the observed data, the size of the 

two matrices can be significantly increased affecting thereby 

the computational cost of the method, as shown in the 

experimental results. To address the problem, we need to 

reduce the dimension of the hidden space, which is 

represented by tensor X. To produce the best approximation of 

X, we select the first n orthonormal columns of the orthogonal 

matrices 𝑈(1) and 𝑈(2), generating the truncated matrices 

𝑈(1)
(𝑛)

∈ 𝑅𝑀𝑥𝑛 and 𝑈(2)
(𝑛)

∈ 𝑅𝑁𝑥𝑛 respectively, as well as the best 

approximation of the core tensor S, i.e., 𝑆(𝑛) ∈ 𝑅𝑛𝑥𝑛𝑥𝑛, with 

n<d. After the truncation of tensor 𝑋, i.e., 𝑋(𝑛) ∈ 𝑅𝑀𝑥𝑁𝑥𝑛, the 

dimension of the orthogonal matrix Ch needs to be reduced as 

well in order for equation (7) to be valid, as shown in Fig.2.    

For the estimation of the transition matrix Ah from equation 

(4), we need to define the new matrices 𝑋1
(𝑛)

 and 𝑋2
(𝑛)

∈

𝑅𝑛𝑥(𝑀𝑁−1)
 after the unfolding of tensor 𝑋(𝑛). Hence, the size 

of the transition matrix 𝐴ℎ
(𝑛)

∈ 𝑅𝑛𝑥𝑛 depends solely on the 

dimension of the hidden state, while as expected the truncated 

...

...

Observation 
data

Time

Elements

1 2

3

1 (1) 2 (2)

3 h

(1) (2)

h



mapping matrix 𝐶ℎ
(𝑛)

= 𝑈(3)
(𝑛)

 is of size dxn, i.e., 𝐶ℎ
(𝑛)

∈ 𝑅𝑑𝑥𝑛.  

B. The stabilized model  

In order to ensure the stability of the system, the spectral 

radius of the transition matrix 𝐴ℎ ∈ 𝑅𝑛𝑥𝑛 needs to be smaller 

than 1, i.e., |𝜆1(𝐴ℎ)| ≤ 1, where 𝜆1 denotes the first 

eigenvalue of matrix Ah, considering the eigenvalues in 

descending order of magnitude. However, the estimated 

matrix Ah from equation (4), i.e., using least squares, may be 

unstable although the system is stable [31]. As shown in the 

experimental results, stabilization can increase significantly 

the performance of the descriptor, however, this process is 

usually ignored and as a result locally optimal values of the 

system's parameters are used.   

In this sub-section, we aim to improve the stability of the 

higher-order linear dynamical system by applying an 

approximation solution based on a convex optimization 

technique [32]. More specifically, to ensure a stable solution 

we reformulate equation (4) as follows: 

 

𝐴𝑠ℎ = 𝑎𝑟𝑔min
𝑎ℎ

(𝑎ℎ𝑃𝑎ℎ − 2𝑞𝑇𝑎ℎ + 𝑟) (8) 

 

where 𝐴𝑠ℎ is the stable transition matrix, 𝑎ℎ = 𝑣𝑒𝑐(𝐴ℎ
(𝑛)

), 

𝑞 = 𝑣𝑒𝑐(𝑋1
(𝑛)

𝑋2
(𝑛)𝑇

) with 𝑎ℎ , 𝑞 ∈ 𝑅𝑛2
, 𝑟 = 𝑡𝑟(𝑋2

(𝑛)𝑇

𝑋2
(𝑛)

) 

with 𝑟 ∈ 𝑅 and 𝑃 = 𝐼𝑛 ⊗ (𝑋1
(𝑛)𝑇

𝑋1
(𝑛)

) with 𝑃 ∈ 𝑅𝑛2𝑥𝑛2
. Here, 

𝐼𝑛 is the nxn identity matrix, 𝑡𝑟(∙) indicates the trace of a 

matrix, 𝑣𝑒𝑐(∙) operator converts a matrix to vector and ⊗ 

denotes the Kronecker product.  

Our main constraint here in order to enforce stability 

criterion in (8) is that the spectral radius of 𝐴𝑠ℎ should not be 

greater than 1. By decomposing the transition matrix 𝐴𝑠ℎ =

𝑈𝛴𝑉𝑇 or 𝛴 = 𝑈𝑇𝐴𝑠ℎ𝑉, the stability criterion can be expressed 

as follows: 

 𝜆1 = 𝑢1
𝑇𝐴𝑠ℎ𝑣1 ≤ 1 ⇒ 𝑡𝑟(𝑣1𝑢1

𝑇𝐴𝑠ℎ) ≤ 1  (9) 

 

where 𝑢1
𝑇 and 𝑣1 are the singular vectors corresponding to 

eigenvalue 𝜆1. By setting 𝑔 = 𝑣𝑒𝑐(𝑢1𝑣1
𝑇) and 𝑎𝑠ℎ =

𝑣𝑒𝑐(𝐴𝑠ℎ) the quadratic problem can be defined as: 

 

 minimize  𝑎𝑠ℎ𝑃𝑎𝑠ℎ − 2𝑞𝑇𝑎𝑠ℎ + 𝑟  (10) 

 subject to  𝑔𝑇𝑎𝑠ℎ ≤ 1 

 

Starting with the initial value 𝑎𝑠ℎ = 𝑎ℎ, the new transition 

matrix, 𝐴𝑠ℎ = 𝑚𝑎𝑡(𝑎𝑠ℎ) (where 𝑚𝑎𝑡(∙) operator converts a 

vector to matrix), is iteratively estimated until the stability 

criterion is satisfied.    

Hence, the stabilized higher-order LDS descriptor (sh-LDS) 

can be defined as 𝑀𝑠ℎ = (𝐴𝑠ℎ, 𝐶𝑠ℎ), where 𝐴𝑠ℎ ∈ 𝑅𝑛𝑥𝑛  is the 

stabilized matrix resulting from the solution of the quadratic 

problem and 𝐶𝑠ℎ is equal to the truncated orthogonal matrix 

𝐶ℎ
(𝑛)

. Similarly the stabilized higher-order LDS model is 

defined in matricized form by the following stochastic 

process: 

 

 𝑥(𝑡 + 1) = 𝑚𝑎𝑡(𝑎𝑠ℎ) 𝑥(𝑡) + 𝐵𝑣(𝑡) 

 (11) 

 𝑦(𝑡) = 𝑦̅ + 𝑈(3)
(𝑛)

𝑥(𝑡) + 𝑤(𝑡) 

 

where  𝑦(𝑡) ∈ 𝑅𝑑𝑥𝑀 is the multidimensional observation data 

in time instant t and 𝑥(𝑡) ∈ 𝑅𝑛𝑥𝑀  is similarly the 

multidimensional hidden state for the same time instant. 

IV. CODEBOOK CREATION BASED ON GRASSMANN 

GEOMETRY 

Having defined the feature descriptor, i.e.,  𝑀𝑠ℎ = (𝐴𝑠ℎ , 𝐶𝑠ℎ), 

we subsequently need to define a similarity metric between 

two sh-LDSs. However, the parameters of a sh-LDS descriptor 

do not lie in a Euclidean space. A common approach to 

address the problem is to estimate the Martin distance between 

two sh-LDSs, 𝑀𝑠ℎ
1  and 𝑀𝑠ℎ

2 . The estimation of the Martin 

distance is based on the calculation of the subspace angles 

between the columns spaces of the extended observability 

matrices of the two models. More specifically, for a sh-LDS 

model, the extended observability matrix 𝑂∞
𝑇 ∈ 𝑅∞𝑥𝑛  is 

defined as:  

 

 𝑂∞
𝑇 (𝑀𝑠ℎ) = [𝐶𝑠ℎ

𝑇 , (𝐶𝑠ℎ𝐴𝑠ℎ)𝑇 , (𝐶𝑠ℎ𝐴𝑠ℎ
2 )𝑇 , … ]  (12) 

 

and the Martin distance between the two sh-LDSs can be 

estimated as follows: 

 

𝐷𝑀𝑠ℎ
(𝑀𝑠ℎ

1 , 𝑀𝑠ℎ
2 )2 = − ln ∏ 𝑐𝑜𝑠2𝜃𝑖

𝑖

 (13) 

where θi are the subspace angles [6] between the models. 

However, an alternative, more efficient way to define a 

notion of similarity between sh-LDS descriptors can be 

achieved through the study of the geometric properties of the 

space in which the parameters of the descriptor lie. This study 

will also allow us to model the variations of the sh-LDS 

classes, which is a key issue in a classification problem. To 

this end, we approximate the extended observability matrix 

𝑂∞
𝑇  with the finite observability matrix 𝑂𝑚

𝑇 ∈ 𝑅𝑚𝑑𝑥𝑛:    

 

𝑂𝑚
𝑇 (𝑀𝑠ℎ) = [𝐶𝑠ℎ

𝑇 , (𝐶𝑠ℎ𝐴𝑠ℎ)𝑇 , (𝐶𝑠ℎ𝐴𝑠ℎ
2 )𝑇 , … , (𝐶𝑠ℎ𝐴𝑠ℎ

𝑚−1)𝑇]  (14) 

 

where n is the dimension of the state space, d the dimension of 

the observed features and m is usually chosen to be equal to n. 

Each column of the finite observability matrix can be 

considered as a n-dimensional subspace of 𝑅𝑚𝑑  space. By 

applying a Gram-Scmidt orthonormalization procedure [33], 

the subspace spanned by the columns of 𝑂𝑚
𝑇  can be 

represented by an orthonormal basis: 

 𝑂𝑚
𝑇 = 𝐺𝑅 (15) 

where 𝐺 ∈ 𝑅𝑚𝑑𝑥𝑛 is an orthogonal matrix, containing an 

orthonormal basis of the subspace, and matrix 𝑅 ∈ 𝑅𝑛𝑥𝑛. The 

orthonormal martrix 𝐺 corresponds to a point on a Grassmann 

manifold and for this reason we can also claim that a sh-LDS 

model can be considered as a Grassmannian point. 



A. Grassmann Geometry 

A Grassmann manifold can be considered as a quotient of the 

special orthogonal group SO(n), i.e., the subset of all 

orthogonal matrices with determinant equal to +1. This simply 

means that we can extend the notion of tangent spaces, 

geodesics etc. from the base manifold SO(n) to the quotient 

space of Grassmann manifold. Since it can be easily shown 

that SO(n) is a Riemannian manifold [28], we can claim that 

Grassmann manifolds are endowed with a Riemannian 

structure, i.e., they form a special class of Riemannian 

manifolds [29], [34]. Hence, the distance between two sh-LDS 

models can be considered as the Riemannian distance between 

two subspaces, that is, the length of the shortest geodesic 

connecting the two Grassmannian points.  

 
Fig. 3. The tangent space at point 𝐺1 and the geodesic connecting 𝐺1 and 𝐺2 

on the Grassman manifold. The exponential map enables us to map points of 

the tangent space onto the manifold. 

 

Let us consider two sh-LDS models, represented by two 

orthogonal matrices 𝐺1 and 𝐺2, which are two points on a 

Grassmann manifold. As shown in Fig.3, 𝑇𝐺1
 is the tangent 

space at point 𝐺1 and α(t), with t ∈ [0,1], is a geodesic 

between 𝐺1 and 𝐺2 on manifold. The geodesic is a parametric 

curve on the manifold, starting at 𝐺1 for t=0, i.e., α(0), with 

velocity V. The velocity of the curve is represented by a vector 

on the tangent space of 𝐺1. To map a point from the tangent 

space 𝑇𝐺1  onto manifold, we need a transformation function, 

so that the distance from 𝐺1 on the tangent space (a tangent 

space is a Euclidean space) is the same as the geodesic 

distance between 𝐺1 and the projected point on the manifold. 

This transformation function is called exponential map and 

leads to the estimation of the geodesic on the manifold: 

 

  𝑎(𝑡) = 𝑒𝑥𝑝𝐺1
(𝑡𝑉) = 𝐺1𝑒𝑥𝑝 (𝑡𝑉) (16)       

 

On the other hand, the inverse transformation, i.e., the 

inverse exponential map, enables us to map a Grassmannian 

point on a tangent space of another point, while preserving the 

distance between the points. In other words, using the inverse 

exponential map we can move from a Grassmann manifold to 

a Euclidean space, such as the tangent space of a manifold's 

point. Hence, the similarity metric between two sh-LDS 

descriptors, 𝐺1 and 𝐺2, can be defined as follows: 

 

 𝑑(𝐺1, 𝐺2) = ‖𝑒𝑥𝑝𝐺2
−1𝐺1‖

𝐹
 (17) 

 

where ||.||F is the matrix Frobenius norm. Here we have to note 

that one can use various norms, e.g. ||.||2, however in our 

experiments we decided to use Frobenius norm since it gave 

us the best results. To estimate the inverse exponential map in 

equation (17), we first need to compute the orthogonal 

completion Or of 𝐺1:    

 

  𝑂𝑟 = 𝐼𝑛 − [
𝐺11 − 𝐼𝑛

𝐺12
] [𝐼𝑛 − 𝐺11

𝑇 ]−1[𝐺11
𝑇 − 𝐼𝑑𝑛 𝐺12

𝑇 ] (18) 

 

where 𝐼𝑛 ∈ 𝑅𝑛𝑥𝑛 is an identity matrix, while 𝐺11 ∈ 𝑅𝑛𝑥𝑛 and 

𝐺12 ∈ 𝑅(𝑚𝑑−𝑛)𝑥𝑛 are the upper and lower parts of 𝐺1 

respectively. Subsequently, in order to estimate the direction 

matrix B from point 𝐺1 to 𝐺2, we compute the thin CS 

decomposition of matrix 𝑂𝑟
𝑇𝐺2: 

 

  𝑂𝑟
𝑇𝐺2 = [

𝑣1 0
0 𝑣̃2

] [
𝛤(𝑡)

−𝛴(𝑡)
] 𝑆1

𝑇 (19) 

 

with matrices Γ(t) and Σ(t) ∈ 𝑅𝑛𝑥𝑛 to be diagonals with 

elements γi=cos(tθi) and σi=sin(tθi) respectively. By setting 

t=1, we can easily compute the angles θi and construct the 

diagonal matrix Θ, with diagonal elements the computed 

angles. The direction matrix 𝐵 ∈ 𝑅(𝑚𝑑−𝑛)𝑥𝑛, specifying the 

direction and speed of geodesic flow, is related to matrix Θ, 

since the singular value decomposition of B is equal to 𝑣̃2𝛩𝑣1. 

Hence, the tangent vector V, which is a skew symmetric 

matrix containing B as element, can be defined as: 

   

 𝑉 = [ 0 𝐵𝑇

−𝐵 0
] (20) 

 

The tangent vector, which is the result of the inverse 

exponential map, lies in the tangent space and through 

equation (17) enables us to measure the distance between two 

sh-LDS descriptors.  

B. Histograms of Grassmannian Points 

The inverse exponential map allows us to estimate a similarity 

metric between two Grassmannian points, however this metric 

by itself is not enough for the classification of 

multidimensional time series.  The first reason is that it gives 

us no information about the variation of different classes in a 

classification problem and the second one is the inherent non-

linearity of the observation data. The latter simply means that 

a point on a Grassmann manifold is a representation of a linear 

system, such as a sh-LDS, which, however, is used for the 

modeling of non-linear observation data. To address this 

problem, we propose the segmentation of the original 

multidimensional signal into equally sized elementary signals 

that can be more efficiently represented by a linear model i.e., 

a sh-LDS model. In this way, we can claim that each 

multidimensional time series can be represented by a set, or a 

"cloud", of points on a Grassmann manifold instead of a single 

point. Fig.4 illustrates an example of human motion, which is 

represented as a cloud of points on the Grassmann manifold 

by using a sliding window that divides the signal into equally 

sized elementary segments, i.e., a point is created in each time 

instant. As it shown in the experimental results section, this 

representation of the non-linear data improves significantly the 
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classification results compared with the use of a single  

descriptor for the representation of the whole time series.              

 
Fig. 4. The multidimensional time series, i.e., a human motion, is represented 

as a set of points on the Grassmann manifold. Each point corresponds to an 

elementary segment (time interval) of the multidimensional time series. 

 

  Therefore, if we manage to identify the most representative 

points on the manifold, i.e., codewords, we can easily define a 

codebook and then apply a bag of systems approach, where 

sh-LDSs play the role of feature descriptors. In this case each 

multidimensional time series can be represented as a 

histogram of the most representative Grassmannian points 

(HoGP). However, there are two significant problems that 

should be addressed here. First, we need to define a suitable 

notion of the "mean" on the Grassmann manifold and second 

we have to ensure that the estimation of the mean in a finite 

set of points on the manifold leads to a deterministic solution 

of the problem.  

  To fulfill the aforementioned requirements, we propose, as 

a first step, the identification of the most representative K 

Grassmannian points among the existing points of the set and 

then the estimation of the K means. To this end, we apply a K-

medoids classification approach [35] considering as medoid of 

each class Ck, the local minimizer of function Fk:      

 

  𝐹𝑘(𝑚𝑘) =
1

𝑛𝑘
∑ 𝑑(𝑚𝑘

𝑛𝑘
𝑗=1 , 𝐺𝑘𝑗) (21)

  

where k=1,...,K, nk indicates the number of points 𝐺𝑘𝑗 in class 

k, 𝑚𝑘 is the medoid of the class and 𝑑(∙) denotes the distance 

between two Grassmannian points (see equation (17)).       

  The medoid 𝑚𝑘 of a class Ck is the best approximation of 

its mean among the existing points of the class. However, the 

identification of the medoids is not enough for the creation of 

the codebook. To define the words of the codebook, we need 

to find the mean of each class, known as the Karcher mean 

[36]. Instead of picking points at random, we consider the K 

medoids as the initial means of the classes, thus ensuring the 

deterministic convergence of the algorithm.  Subsequently, we 

map the Grassmannian points of the class on the tangent plane 

of the current mean and we estimate the average tangent 

vector according to the following equation:    
 

  𝑉𝑘
̅̅ ̅ =

1

𝑛𝑘
∑ 𝑒𝑥𝑝𝑚𝑘

−1 (𝐺𝑘𝑗)
𝑛𝑘
𝑗=1  (22) 

  

The new mean 𝑚̂𝑘 of the class is considered then as the 

projected point on the manifold, which is estimated by moving 

𝑚𝑘 towards the direction of the average tangent vector 𝑉𝑘
̅̅ ̅ 

(typically setting factor t equal to 0.5): 

 

 𝑚̂𝑘 = 𝑒𝑥𝑝𝑚𝑘
(𝑡𝑉𝑘

̅̅ ̅) (23)  

 

The new average tangent vector and mean of Ck class 

(equations (22) and (23)) are iteratively computed until the 

algorithm converges or the maximum iterations are exceeded. 

 

 
Fig. 5. Classification of a Grassmannian point to one of the K representative 

codewords for the creation of HoGP descriptor. 

 

The estimation of the mean 𝑚̂𝑘 of each class Ck leads to the 

creation of a codebook consisting of the most representative 

Grassmannian points. To generate the HoGP representation of 

a multidimensional time evolving data, we need to classify 

each elementary segment of data, represented as a point on the 

manifold, to one of the K codewords (experimental results 

with various codebook sizes are presented in Section V). To 

do so, we first need to reidentify the members of the K classes, 

based on the estimated means, 𝑚̂𝑘, and then to model their 

variation. Since by mapping a point on the tangent space of a 

mean point, the geodesic distance between the two points 

remains the same as the Euclidean distance between the mean 

and the tangent vector, we will attempt to model the variation 

of K classes on the tangent spaces of the estimated means.  

 Let's consider that a class Ck, with mean 𝑚̂𝑘, consists of nk 

Grassmannian points 𝐺𝑗, with j=1....nk. Using the inverse 

exponential map, we map each point on the tangent space of 

the mean point and we estimate the tangent vectors 𝑉𝑗
𝑘. The 

variation of each class is then modeled by the covariance 

matrix of the tangent vectors 𝑉𝑗
𝑘 as follows (see also 

Algorithm 1): 

𝑆𝑘 = 𝑐𝑜𝑣([𝑒𝑥𝑝𝑚̂𝑘

−1 𝐺1| 𝑒𝑥𝑝𝑚̂𝑘

−1 𝐺2 | … | 𝑒𝑥𝑝𝑚̂𝑘

−1 𝐺𝑛𝑘
])= (24) 

= 𝑐𝑜𝑣([𝑉1
𝑘| 𝑉2

𝑘 | … |𝑉𝑛𝑘
𝑘 ]) 

 

Therefore, the distance of an arbitrary point 𝐺0 (see Fig.5) 

from a codeword with mean 𝑚̂𝑘 and covariance matrix Sk can 

be defined as follows: 

 

 𝑑𝑘 = 𝑡𝑟(𝑉0
𝑘𝑆𝑘

−1(𝑉0
𝑘)𝑇) (25) 

 

where 𝑡𝑟(∙) indicates the trace of a matrix and 𝑉0
𝑘 is the 

tangent vector of point 𝐺0 on the tangent space of 𝑚̂𝑘.  
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Algorithm 1 HoGP descriptor: Codebook creation 

Step 1: Given a set of multidimensional signals {Yi}  

Step 2: Divide the signals into equally sized elementary 

signals and produce a cloud of points {Gi} on the  Grassmann 

manifold 

Step 3: Apply a K-medoids classification approach to define 

the 𝑚𝑘 medoids of Ck classes.   

Step 4:  For each class estimate the Karcher mean 𝑚̂𝑘:  

 Step 4.1: 𝑚̂𝑘 = 𝑚𝑘 

 Step 4.2: for each i=1,....,nk  map the Grassmannian points  

 𝐺𝑘𝑗 of the class on the tangent plane of the mean and 

 estimate the average tangent vector: 

 𝑉𝑘
̅̅ ̅ =

1

𝑛𝑘
∑ 𝑒𝑥𝑝𝑚𝑘

−1 (𝐺𝑘𝑗)
𝑛𝑘
𝑗=1  

 Step 4.3:  Compute the new mean: 𝑚̂𝑘 = 𝑒𝑥𝑝𝑚𝑘
(𝑡𝑉𝑘

̅̅ ̅),  

 with t=0.5 

 Step 4.4: Repeat steps 4.2 and 4.3 until the algorithm 

 converges or the maximum iterations are exceeded. 

Step 5: Re-identify the members of the K classes, based on the 

estimated 𝑚̂𝑘 means.   

Step 6: Compute the covariance matrix of each class: 

𝑆𝑘 = 𝑐𝑜𝑣([𝑉1
𝑘| 𝑉2

𝑘 | … |𝑉𝑛𝑘
𝑘 ])  

 

Algorithm 2 Classification of HoGP descriptor 

Step 1: Given a multidimensional signal 𝑌 ∈ 𝑅𝑀𝑥𝑁𝑥𝑑  

Step 2: Represent the signal as a cloud of Grassmannian 

points:  

For each elementary segment: 

 Step 2.1: HOSVD: 𝑌 = 𝑆 ×1 𝑈(1) ×2 𝑈(2) ×3 𝑈(3)    

 Step 2.2: Dimensionality reduction for n<d 

 Step 2.3: Estimate matrices 𝐶𝑠ℎ and 𝐴ℎ: 𝐶𝑠ℎ
(𝑛)

= 𝑈(3)
(𝑛)

 and 

 𝐴ℎ = 𝑋2𝑋1
𝑇(𝑋1𝑋1

𝑇)−1 

 Step 2.4: Estimate the stabilized matrix  𝐴𝑠ℎ = 𝑚𝑎𝑡(𝑎𝑠ℎ) 

 by solving the quadratic problem of equation (10)  

 Step 2.4: Define the Grassmannian point 𝐺 ∈ 𝑅𝑚𝑑𝑥𝑛  

 through  equation (15) 

End For 

Step 3: Classify each point to one of the K codewords:  

 Step 3.1: Estimate the tangent vector 𝑉0
𝑘 of each point on 

 the tangent space of each codeword 𝑚̂𝑘 

 Step 3.2: Calculate the distance of each point from the K

 codewords: 𝑑𝑘 = 𝑡𝑟(𝑉0
𝑘𝑆𝑘

−1(𝑉0
𝑘)𝑇) 

Step 4: Define the HoGP descriptor ℎ = [ℎ1, ℎ2, … , ℎ𝑘]𝑇 

Step 5: Infer the label of the descriptor using a SVM 

classifier.  

 

  Finally, each multidimensional time-series is represented as 

a Term Frequency (TF) histogram ℎ = [ℎ1, ℎ2, … , ℎ𝑘]𝑇 of the 

predefined codewords and a multi-class SVM classifier is 

trained with the distributions of these codewords. For the 

classification of a new time series, HoGP representation is 

estimated and the extracted histogram is provided to the SVM 

classifier to infer the label of the class (Algorithm 2). 

 

V. EXPERIMENTAL RESULTS 

For the evaluation of the proposed methodology we conducted 

extensive tests in three different application domains: i) video-

based surveillance systems, ii) dynamic texture categorization 

and iii) human action recognition. In the application domain of 

video based surveillance, we selected two application 

scenarios for early warning systems, namely flame and smoke 

detection. Our initial goal here was to apply sparse sampling 

and evaluate the performance of our methodology by 

exploiting information from all channels. To further examine 

the performance of our algorithm with more than three 

channels,  in the case of smoke detection, we decided to add 

another one by creating a synthesized channel information. 

Since in both of these cases (flame and smoke) we deal with a 

binary problem (e.g., flame or flame colored object) in the 

next application domain of dynamic texture categorization our 

main goal was to evaluate the performance of our method by 

applying a dense sampling approach in a multiclass problem 

using a dataset containing videos with water, flags, flowers, 

fountains etc.. Finally, to demonstrate the generality of our 

approach, we also applied our method to more noisy 

multidimensional signals, such as those produced by depth 

motion sensors or video cameras, for the classification of 

action sequence dynamics. More specifically, ten different 

datasets were used in total, while the performance of the 

proposed method was compared against a number of state of 

the art approaches.   

A. Video-based Surveillance Applications 

1) Fire Detection  

In this section, we aim to present a multivariate comparison of 

the proposed methodology against a number of different 

variations of linear dynamical systems. Our goal here is 

twofold: first we want to define the optimum set of parameters 

for our algorithm in dynamic texture analysis and second we 

want to demonstrate its superiority against other state of the 

art LDS approaches by taking into account all these factors 

that can directly affect the experimental results. Hence, in this 

way we can ensure a fair comparison between the different 

approaches. For the experimental evaluation of our method, 

we used two well known datasets containing fire and non-fire 

video sequences, such as the Firesense dataset [37] and the 

dataset used by Ko et al. in [38]. In order to avoid a dense 

sampling approach (this is a significant requirement in 

automatic video-based flame detection systems), we adopted 

for all algorithms the pre-processing step proposed in [27] for 

the identification of candidate image patches, i.e., those image 

patches for which there is a non-trivial indication of flame 

existence. In order to be able to classify a frame as flame or 

non-flame frame, i.e., to determine the time of the incident, we 

segmented each video in equally sized subsequences using a 

sliding time window T and we represented each subsequence 

as a histogram using a bag of features approach. In the 

experimental results of this section, we estimated the number 

of correctly detected frames, either flame or non-flame, out of 

the total number of frames in the datasets, which is a typical  

approach for the evaluation of flame/smoke detection 

algorithms.    

  More specifically, for the generalized sh-LDS descriptor, 



 
(a) 

 
(b) 
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Fig. 6. Total detection rates using the datasets in [32] and [33] with different parameters sets: a) spatio-temporal patches of various sizes, b) different codebooks 

and c) various time window lengths. 
 

 
Fig. 7. Comparison of the proposed approach with six different LDS-based 

approaches using the best parameter set. 
 

   
Fig. 8.  A flame detection example from Firesense dataset. 

 

we considered each image patch as a multidimensional time 

series represented by a tensor 𝑌 ∈ 𝑅𝑀𝑥𝑁𝑥𝑑 , where M is the 

number of channels (i.e., three for an RGB image), N is the 

number of frames, i.e., the temporal length of the 

spatiotemporal image patch and d indicates the total number of 

pixels in a patch i.e., d depends on the size of the image patch. 

Similarly, for the LDS descriptor, we initially used grayscale 

information and then we concatenated the pixels' intensities of 

all three channels. Finally, for the h-LDS descriptor we 

created spatio-temporal cuboids as proposed in [21] for smoke 

detection. The proposed HoGP algorithm using as feature the 

generalized sh-LDS descriptor was compared against six 

different LDS-based approaches: LDSs using Martin distance 

based in [26] (using both grayscale and RGB data), Procrustes 

distance proposed in [39] and also used in [40], a non-linear 

LDS approach based on Kernel PCA as proposed in [26], a 

stabilized LDS model introduced in [32] and a higher-order 

LDS [21] using Martin distance as a similarity metric. In order 

to have a fair comparison, we used the same training and 

testing set for all methods and we applied a common bag-of-

systems approach using as features the above descriptors.  

  Fig. 6 illustrates classification results with various patch 

sizes, number of codewords and time window lengths. More 

specifically, we compared the proposed method using six 

different patch sizes, ten codebook sizes and six time window 

lengths, i.e., twenty two comparison tests. For running the 

experiments, we adopted the following procedure: initially the 

size of the codebook was set to 64, while the temporal length 

of the sliding window to 100, since these values were 

successfully used in the past for LDS-based classification [27], 

and we run experiments with various patch sizes. 

Subsequently, we selected the best patch size and we 

compared the algorithms with various codebooks and finally, 

in order to produce the results of Fig. 6c, we kept the best 

patch and codebook size from the two previous series of 

experiments and we compared the methods using different 

time window lengths. As one can easily see in Fig. 6, the 

proposed method outperforms all other approaches 

independently of the parameters set used in the experiments. 

The best experimental results, which are illustrated in Fig. 7, 

are produced for patch size of 16x16x16, codebook size of 64 

clusters (as we can see in Fig. 6b by using more than 64 

codewords does not lead to a significant improvement in the 

results) and for time window length equal to 100. Fig. 8 

illustrates indicatively a flame detection example using a 

video from Firesense dataset. 

 

 
Fig. 9. Comparison of the proposed method against six different approaches 
and different hidden state's dimensions. 
 

  After the definition of the above parameters, we also 

attempted to examine the effect of the LDS size, i.e., the 

dimension n of the hidden state after the dimensionality 

reduction process described in Section II, in the performance 

of the proposed method. Fig. 9 displays the detection 

performance of the method against the choice of the hidden 

state's dimension and the other state of the art approaches 

(except for the higher order LDS [21], where dimensionality 

reduction is not applicable, therefore in Fig. 9 we present 

experimental results using the generalized higher order LDS 

and Martin distance). We can see that independently of the 

choice of the hidden state's dimension (as we explained in 

Section II, this choice affects the size of the descriptor's 

parameters, i.e., 𝐴𝑠ℎ ∈ 𝑅𝑛𝑥𝑛   and 𝐶𝑠ℎ ∈ 𝑅𝑑𝑥𝑛) the proposed 

method outperforms all other approaches. By reducing the size 
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of the descriptor's parameters, the detection performance 

seems to be improved, however, we cannot claim that in this 

application scenario the choice of the LDS size affects 

significantly the performance of the descriptor.  

 

 
Fig. 10. Estimation of the computational cost with various dimensions as a 
percentage of the highest one, i.e., 16. 
 

 
Fig. 11. Detection rates with various observability matrix sizes (horizontal 

axis) and hidden state dimensions.   
  

  On the other hand, the main advantage of selecting a low 

dimension in the space of the hidden variable lies in the 

reduction of the computation cost, as shown in Fig. 10. More 

specifically, in Fig. 10 we present experimental results of the 

computational costs of the method with various dimensions as 

a percentage of the highest one, i.e., n=16. As expected, by 

reducing the size of the descriptor, the computational cost 

becomes smaller, with that of n=3, i.e., 𝐴𝑠ℎ ∈ 𝑅3𝑥3  and 

𝐶𝑠ℎ ∈ 𝑅𝑑𝑥3, to provide the best results with a computational 

cost reduction of around 88% with respect to that of n=16. 

More specifically, 77.28% of the computational cost 

corresponds to the estimation of the sh-LDS descriptors (with 

the higher order SVD analysis and stabilization process to 

require 35.42% and 56.57% of the sh-LDS computational cost 

respectively), while the rest of the processes, i.e., the 

estimation of HoGP descriptor and the classification process 

require 20.82% and 1. 9% of the total computation cost. The 

average frame rate of the proposed method was 4.81fps (using 

a PC with Core i5, 2.4GHz processor), which is considered 

adequate for this application. Compared to other approaches, 

there is a slight reduction in the computational efficiency 

(higher order LDS: 5.4fps, stabilized LDS: 5.1fps, LDS-

Martin: 5.7fps, kernel PCA-LDS: 5.89fps and LDS-

procrustes:5.97fps) mainly due to the higher order SVD 

analysis and the stabilization process. However, as shown in 

the results the tensor representation of data does not increase 

prohibitively the computational burden, since the higher order 

decomposition takes place in the first step of the method.       

  Finally, in order to study the effect of the size of the 

observability matrix, m, in the performance of our method, we 

conducted tests with various m values and hidden state 

dimensions, i.e., different n values. As we can see in Fig. 11, 

the detection performance increases when we reduce the size 

of the observability matrix, with the best result to be produced 

for m=5 and n=3. Here, we have to note that the experimental 

results presented in this paragraph can be improved if we 

combine the proposed method with other spatio-temporal 

characteristics of flame as presented in [27], however, the 

development of an ad-hoc solution for the detection of fire is 

beyond the scope of this paper.      

 

2) Smoke Detection  

The case of smoke detection from video-based systems has 

many similarities to the problem of flame detection that we  

discussed in the previous paragraph. In this case our main goal 

is to identify smoke and discriminate it from other objects in 

nature that appear similar characteristics with smoke, e.g., 

clouds, shadows etc.. However, we have to keep the 

computation cost low, as in the case of flame, hence, a sparse 

sampling approach needs to be applied as well in this case. 

Since the visualization of the feature space of HOG descriptor 

can provide us extra information for the detection of smoke, in 

this experimental study we aim to examine the performance of 

our algorithm with more than three channels, i.e., R, G and B 

color components. To this end, we created a synthesized 

channel information, i.e., a fourth channel H, by visualizing 

the feature space of HOG descriptor, as proposed in [41].    

 

 
Fig. 12. Detection rates of all methods using the two smoke datasets. 
 

More specifically, for the evaluation of the proposed 

method we used two popular datasets, the Bilkent [42] and the 

Visor [43] datasets, containing videos with smoke and non 

smoke frames (more than 24,000 frames in total). Moreover, 

we applied the same sparse sampling approach to all 

algorithms presented in Fig. 12, as proposed in [21]. For the 

standard LDS approach we initially used grayscale 

information and then we concatenated the RGB data and the 

RGBH data. For the kernel-PCA approach we also 

concatenated the RGBH data, while for the higher order LDS 

descriptor we created a tensor of size 16x16x4x16. Finally, for 

the proposed generalized sh-LDS descriptor we created a 

tensor of 4x16x256. As we can see in Fig. 12, the proposed 

method outperforms all other approaches with a detection rate 

of 94.51% (for the experimental results presented in Fig. 12, 

we have used the best parameter set for all algorithms as 

defined in the previous paragraph). In Fig. 13, we indicatively 
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present a smoke detection case in a video of Visor dataset 

(Fig. 13). As in the case of flame, one can combine the 

proposed method with other approaches aiming to model the 

spatiotemporal characteristic of smoke as we showed in [21], 

however, the development of an ad-hoc solution for smoke 

detection is beyond the scope of this paper. 

  

  
(a) 

 

Fig. 13. An example of smoke detection from Visor dataset. 

B. Dynamic Texture Categorization 

As was mentioned in the introduction of this section, the 

problems that we studied so far, i.e., flame and smoke 

detection, are binary classification problems, which require a 

sparse sampling approach. In this experimental study, our 

main goal is to evaluate the performance of our method in a 

multi-class classification problem using dense sampling. More 

specifically, for the evaluation of our method, we used one of 

the most popular datasets containing video sequences with 

dynamic textures, such as the DynTex Beta dataset [44]. The 

dataset consists of 162 video sequences classified in 10 

different categories of dynamic textures, such as sea, 

vegetation, trees, flags, calm water, fountains, smoke, 

escalator, traffic and rotation (see Fig. 14). 

 

   

   
Fig. 14. Screenshots from videos of Dyntex dataset containing various classes. 
  

 
Fig. 15. Classification results of all methods using Dyntex dataset. 
 

  For the experimental results presented in Fig. 15, we used a 

training set consisting of four video sequences from each 

class, while the remaining video sequences were used for the 

evaluation of the algorithms. For comparing the algorithms, 

we used the optimum parameter set defined in the previous 

sub-sections. As we can clearly see in Fig. 15, the proposed 

method performs better than all the other state of the art 

approaches achieving improvements up to 3.28%. Moreover, 

the representation of video sequences as a cloud of points 

instead of a single Grassmannian point (last column of Fig. 

15) improves the classification rate up to 13.94%. As shown in 

Fig. 16, which presents the confusion matrix for the proposed 

method, in most of the classes the classification rate is around 

80%, with only those of flags and rotation presenting low rates 

due to the large intra-class variation, e.g., the rotation class 

contains videos of windmills, wheels etc.. 

 

 
Fig. 16. Confusion matrix of the proposed method on Dyntex dataset. 

C. Human Action Recognition 

In all above cases, we dealt with dynamic textures analysis, 

which is a typical application domain of linear dynamical 

systems. In this section, we attempt to evaluate the 

performance of the proposed methodology in a different 

application domain, such as this of human action recognition 

studying two application scenarios: i) action recognition from 

depth sensor and ii) action recognition from video sequences.   

 

1) Action Recognition from depth sensors 

For the first scenario, we used three datasets with different 

characteristics containing skeletal data recorded using 

Microsoft Kinect sensor. More specifically, we initially used 

CERTH dataset [45] (see Fig.17), which contains a relative 

small number of actions, i.e., six different actions (bend 

forward, left kick, right kick, raise hands, hand wave, push 

with hands), performed by 6 subjects, each repeated 10 times 

(i.e., 360 actions in total). Then, we used the well-known G3D 

dataset [46], containing a large range of gaming actions, i.e., 

20 gaming actions (punch right, punch left, kick right, kick 

left, defend, golf swing, tennis swing forehand, tennis swing 

backhand, tennis serve, throw bowling ball, aim and fire gun, 

walk, run, jump, climb, crouch, steer a car, wave, flap and 

clap), repeated 3 times by 10 subjects (i.e., 600 actions in 

total). Finally, the third dataset was the popular Microsoft 

Research Cambridge-12 Kinect gesture database (MSRC-12) 

[47], which contains a smaller number of actions, i.e., 12 

actions (repeated 4-5 times per person), but with a high intra-

class variation, i.e., 30 people. The MSRC-12 dataset is 

partitioned along different methods of instruction given to the 

subjects such as text and video. We used the part of the dataset 

where only video instructions were given (1608 sequences). 

All three datasets contain tracks of 20 skeleton joint positions. 

  To evaluate the performance of our method, we segmented 

the multidimensional signal into equally sized elementary 

segments using a sliding time window of 16 frames, which is a 

temporal length that gave us good results in dynamic texture 

analysis and also enables us to extract an adequate number of 
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sh-LDSs (for each elementary segment we created a tensor of 

size 3x16x20 i.e., 3 elements corresponding to the x,y and z 

coordinates, 16 is the temporal length and 20 the number of 

skeletal joints) for the creation of the histogram of HoGP 

descriptor. Moreover, in this way we can accomplish a better 

representation of human motion, as each elementary segment 

can be modeled better by a linear dynamical system than the 

whole non-linear sequence of data. For this reason, we provide 

experimental results based on the modeling of the whole 

signal (LDSs using Martin and Procrustes distance, Kernel 

PCA LDS, stabilized LDS, the generalized higher-order LDS 

with Martin distance and sh-LDS with Grassmanian distance) 

as well as on the modeling of the segmented signal using 

histogram approaches (LDS and sh-LDS with Martin 

distance). Similarly to the dynamic texture analysis, we 

provide an evaluation study with various LDS sizes (for all 

approaches) and codewords number (only for the three 

histogram approaches). As we can see in Fig. 18 and 19, the 

proposed method outperforms all other approaches providing 

the best results for LDS size equal to 3 (this dimension 

provides a computational cost reduction of around 90% as in 

the case of dynamic textures) and codebook size of 128. 
 

(a) 
 

(b) 
 

(c) 
 

(d) 
 

(e) 
 

(f) 
Fig. 17. Screenshots from CERTH dataset a) raise hands, b) right kick, c) 

bend forward, d) push with hands, e) left kick and f) hand wave. 
 

 
Fig. 18. Experimental results with different LDS sizes. 
 

Table II presents the classification rates of the proposed 

method against eight LDS variations and four other state of 

the art algorithms, i.e., Dynamic Time Warping [48], 

Conditional Random Fields [49], Hidden Markov Models [50] 

and Restricted Boltzmann Machine [51] on the three datasets. 

For all algorithms, we used as input signal the joints 

coordinates, although one can also use other skeletal 

representations, as those proposed in [52], however, such a 

study is out of the scope of this paper. Moreover, the proposed 

method can be combined with other local or global models as 

in [53] or it can be used for the fusion of depth cameras and 

inertial sensors as in [54], however, again the goal of this 

paper is not to propose an ad-hoc motion recognition 

algorithm, but a general approach for the classification of 

multidimensional time-evolving data. In the experimental 

results presented in Table II, we used the same training and 

testing set for all algorithms in order to have a fair comparison 

(i.e., for CERTH dataset we used 6 instances of each action 

per subject for training and 4 instances for testing, for G3D 

dataset 1 instance of each action per subject used for training 

and 2 instances of each action for testing and finally for 

MSRC-12 37% of the dataset was used for training and 63% 

for testing). For the proposed method, we set the size of the 

observability matrix equal to 5, as in the case of dynamic 

texture, since it gave us again the best results, while for the 

Dynamic Time Warping algorithm, we initially adopted a K-

medoid approach before the classification process in order to 

define the most representative motion of each class.  
 

 
Fig. 19. Experimental results with various codebook sizes. 

 
TABLE II 

EXPERIMENTAL RESULTS FOR ALL DATASETS 

 CERTH G3D MSRC12 Aver. 

LDS - Martin 77.08% 50.00% 40.07% 55.72% 

LDS - Procrustes 93.75% 65.25% 57.04% 72.01% 

Kernel PCA LDS - Martin 90.97% 52.50% 43.08% 62.18% 

Stabilized LDS - Martin 90.27% 64.50% 60.11% 71.63% 

Higher order LDS - Martin 96.52% 63.50% 67.26% 75.76% 

sh-LDS - Grassm.distance 93.75% 69.75% 59.72% 74.41% 

Histogram of LDS - Martin 90.97% 53.25% 78.06% 74.09% 

Histogram of shLDS - Martin 97.22% 84.25% 78.96% 86.81% 

Proposed - sh-LDS - HoGP 98.61% 90.75% 80.15% 89.84% 

Dynamic Time Warping 87.50% 57% 48.11% 64.20% 

Conditional Random Fields 97.91% 69.25% 67.95% 78.37% 

Hidden Markov Model 96.52% 77.40% 76.20% 83.37% 

Restricted Boltzmann Machine 97.10% 84% 79.80% 86.97% 

 

  The last column of Table II presents the average 

classification rates on three datasets. As we can see, the 

proposed method outperforms all other approaches with the 

HoGP algorithm achieving improvements up to 3.03% from 

Martin distance (the average distance between sh-LDS-HoGP 

and sh-LDS-Martin) and up to 15.43% from a simple 

Grassmannian distance (the average distance between sh-

LDS-HoGP and sh-LDS-Grassmann), while it also provides 

improvements up to 15.75% from histograms of traditional 

LDSs with Martin distance as the similarity metric. 

 

2) Action Recognition from video sequences 

The final scenario that we investigated was that of action 

recognition from video sequences. In this scenario, one can 

form the multidimensional signal using different types of 

features, e.g., raw pixels, silhouettes, shape features etc.. In 

this paper, we formed the multidimensional signal by using 

the elements of MBH (Motion Boundary Histograms) 

descriptor, which contains the relative motion between pixels. 

More specifically, for each MBH descriptor we formed a 
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multidimensional signal of size 8x3x4 and we represented a 

video sequence as a cloud of Grasmannian points (each one 

corresponding to a MBH descriptor). For the estimation of the 

MBH local descriptors, instead of using dense optical flow we 

applied sparse MPEG flow [55], which improves the speed of 

feature extraction and implies only minor reduction in 

classification performance. Table III presents experimental 

results with various codebook (CB) sizes for a number of 

descriptors using UCF sports dataset [56]. For the comparison 

of the descriptors, we used a standard histogram encoding 

(VLAD encoding or Fisher Vector representation can also be 

applied to improve performance as in [55]), the Leave-One-

Out approach and the original sequences of the dataset, i.e., 

we did not add the flipped version of sequences as in [57].     

 
TABLE III 

EXPERIMENTAL RESULTS FOR ALL DESCRIPTORS IN UCF SPORTS DATASET 

CB 
Size 

HoGP  
(MBH) 

HOF HOG MBHx MBHy MBH HOG-
MBH 

16 71.42% 65.41% 69.17% 70.67% 72.18% 69.92% 63.90% 

32 81.19% 66.91% 69.19% 71.42% 78.94% 69.94% 69.92% 

64 81.95% 68.42% 73.68% 73.71% 77.44% 75.18% 71.42% 

92 77.44% 67.66% 70.67% 71.33% 71.45% 71.42% 72.93% 

 

TABLE IV 

EXPERIMENTAL RESULTS IN HMDB51 DATASET 

HoGP(MBH)  MBHx MBHy MBH 

32.47% 27.95% 28.44% 28.79% 

  As we can see in Table III, HoGP outperforms all other 

descriptors regardless of the codebook size. The best 

experimental results for HoGP are produced for codebook size 

of 64, achieving improvements up to 6.77% compared to 

MBH. Table IV presents experimental results of HoGP against 

MBHx, MBHy and MBH descriptors (since they yielded the 

best results in UCF sports) in a larger dataset, namely 

HMDB51 [58]. For the experimental results in Table IV, we 

used codebook size equal to 64 for all descriptors, since this 

size produced the best results in Table III and we followed the 

same evaluation approach. As we can see HoGP outperforms 

again improving the performance of MBH descriptor up to 

3.68%. We have to note here that one can form the 

multidimensional signal using other descriptors or improve the 

classification rate by combining HoGP with other spatio-

temporal descriptors, however, this study is out of the scope of 

this paper.              

VI. CONCLUSION 

In this paper we presented a novel methodology for the 

modeling and classification of multidimensional time series by 

exploiting the correlation between the different channels of 

data and the geometric properties of the space in which the 

parameters of the descriptor lie. More specifically, we 

proposed a novel generalized form of a stabilized higher-order 

linear dynamical system (sh-LDS) and we introduced a new 

methodology, namely Histograms of Grassmannian Points 

(HoGP) for the classification of multidimensional time 

evolving data in various computer vision problems dealing 

with the analysis of dynamic scenes. As we showed in the 

experimental results, the proposed methodology improves the 

performance of LDSs in various application domains against a 

number of state of the art approaches. In the future, we aim to 

apply the proposed methodology to the classification of 

multimodal multidimensional data, such as those produced by 

multispectral imaging systems e.g., for dynamic texture 

analysis, or different motion sensing technologies for human 

action recognition.     
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